Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 141(7): 1146-58, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20541250

RESUMO

Macroautophagy is a lysosomal degradative pathway essential for neuron survival. Here, we show that macroautophagy requires the Alzheimer's disease (AD)-related protein presenilin-1 (PS1). In PS1 null blastocysts, neurons from mice hypomorphic for PS1 or conditionally depleted of PS1, substrate proteolysis and autophagosome clearance during macroautophagy are prevented as a result of a selective impairment of autolysosome acidification and cathepsin activation. These deficits are caused by failed PS1-dependent targeting of the v-ATPase V0a1 subunit to lysosomes. N-glycosylation of the V0a1 subunit, essential for its efficient ER-to-lysosome delivery, requires the selective binding of PS1 holoprotein to the unglycosylated subunit and the Sec61alpha/oligosaccharyltransferase complex. PS1 mutations causing early-onset AD produce a similar lysosomal/autophagy phenotype in fibroblasts from AD patients. PS1 is therefore essential for v-ATPase targeting to lysosomes, lysosome acidification, and proteolysis during autophagy. Defective lysosomal proteolysis represents a basis for pathogenic protein accumulations and neuronal cell death in AD and suggests previously unidentified therapeutic targets.


Assuntos
Doença de Alzheimer/metabolismo , Autofagia , Lisossomos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas/metabolismo , Doença de Alzheimer/patologia , Animais , Blastocisto/metabolismo , Linhagem Celular , Deleção de Genes , Técnicas de Inativação de Genes , Glicosilação , Humanos , Hidrólise , Camundongos , Camundongos Knockout , Neurônios/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/metabolismo
2.
Eur J Neurosci ; 37(12): 1949-61, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23773064

RESUMO

Autophagy is a lysosomal degradative process which recycles cellular waste and eliminates potentially toxic damaged organelles and protein aggregates. The important cytoprotective functions of autophagy are demonstrated by the diverse pathogenic consequences that may stem from autophagy dysregulation in a growing number of neurodegenerative disorders. In many of the diseases associated with autophagy anomalies, it is the final stage of autophagy-lysosomal degradation that is disrupted. In several disorders, including Alzheimer's disease (AD), defective lysosomal acidification contributes to this proteolytic failure. The complex regulation of lysosomal pH makes this process vulnerable to disruption by many factors, and reliable lysosomal pH measurements have become increasingly important in investigations of disease mechanisms. Although various reagents for pH quantification have been developed over several decades, they are not all equally well suited for measuring the pH of lysosomes. Here, we evaluate the most commonly used pH probes for sensitivity and localisation, and identify LysoSensor yellow/blue-dextran, among currently used probes, as having the optimal profile of properties for measuring lysosomal pH. In addition, we review evidence that lysosomal acidification is defective in AD and extend our original findings, of elevated lysosomal pH in presenilin 1 (PS1)-deficient blastocysts and neurons, to additional cell models of PS1 and PS1/2 deficiency, to fibroblasts from AD patients with PS1 mutations, and to neurons in the PS/APP mouse model of AD.


Assuntos
Doença de Alzheimer/metabolismo , Autofagia/fisiologia , Lisossomos/química , Lisossomos/metabolismo , Degeneração Neural/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Transgênicos , Presenilina-1/metabolismo , Proteólise
3.
J Mol Biol ; 432(8): 2633-2650, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32105735

RESUMO

Lysosomal dysfunction is considered pathogenic in Alzheimer disease (AD). Loss of presenilin-1 (PSEN1) function causing AD impedes acidification via defective vacuolar ATPase (vATPase) V0a1 subunit delivery to lysosomes. We report that isoproterenol (ISO) and related ß2-adrenergic agonists reacidify lysosomes in PSEN1 Knock out (KO) cells and fibroblasts from PSEN1 familial AD patients, which restores lysosomal proteolysis, calcium homeostasis, and normal autophagy flux. We identify a novel rescue mechanism involving Portein Kinase A (PKA)-mediated facilitation of chloride channel-7 (ClC-7) delivery to lysosomes which reverses markedly lowered chloride (Cl-) content in PSEN1 KO lysosomes. Notably, PSEN1 loss of function impedes Endoplasmic Reticulum (ER)-to-lysosome delivery of ClC-7. Transcriptomics of PSEN1-deficient cells reveals strongly downregulated ER-to-lysosome transport pathways and reversibility by ISO, thus accounting for lysosomal Cl- deficits that compound pH elevation due to deficient vATPase and its rescue by ß2-adrenergic agonists. Our findings uncover a broadened PSEN1 role in lysosomal ion homeostasis and novel pH modulation of lysosomes through ß2-adrenergic regulation of ClC-7, which can potentially be modulated therapeutically.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Canais de Cloreto/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Mutação , Presenilina-1/fisiologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Cálcio/metabolismo , Cloretos/metabolismo , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Presenilina-1/genética , Receptores Adrenérgicos beta 2/química
4.
Biochem Biophys Res Commun ; 383(2): 198-202, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19345671

RESUMO

The Saccharomyces cerevisiae gene YPK9 encodes a putative integral membrane protein which is 58% similar and 38% identical in amino acid sequence to the human lysosomal P(5B) ATPase ATP13A2. Mutations in ATP13A2 have been found in patients with Kufor-Rakeb syndrome, a form of juvenile Parkinsonism. We report that Ypk9p localizes to the yeast vacuole and that deletion of YPK9 confers sensitivity for growth for cadmium, manganese, nickel or selenium. These results suggest that Ypk9p may play a role in sequestration of divalent heavy metal ions. Further studies on the function of Ypk9p/ATP13A2 may help to define the molecular basis of Kufor-Rakeb syndrome and provide a potential link to environmental factors such as heavy metals contributing to some forms of Parkinsonism.


Assuntos
Cádmio/toxicidade , Manganês/toxicidade , Níquel/toxicidade , ATPases Translocadoras de Prótons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Selênio/toxicidade , Cádmio/metabolismo , Cátions Bivalentes/metabolismo , Cátions Bivalentes/toxicidade , Histidina/metabolismo , Humanos , Manganês/metabolismo , Níquel/metabolismo , ATPases Translocadoras de Prótons/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Selênio/metabolismo , Vacúolos/enzimologia
5.
Neuromolecular Med ; 8(3): 279-306, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16775381

RESUMO

Regulation of the concentration of ions within a cell is mediated by their specific transport and sequestration across cellular membranes. This regulation constitutes a major factor in the maintenance of correct cellular homeostasis, with the transport occurring through the action of a large number of different channel proteins localized to the plasma membrane as well as to various organelles. These ion channels vary in specificity from broad (cationic vs anionic) to highly selective (chloride vs sodium). Mutations in many of these channels result in a large number of human diseases, collectively termed channelopathies. Characterization of many of these channels has been undertaken in a variety of both prokaryotic and eukaryotic organisms. Among these organisms is the budding yeast Saccharomyces cerevisiae. Possessing a fully annotated genome, S. cerevisiae would appear to be an ideal organism in which to study this class of proteins associated to diseases. We have compiled and reviewed a list of yeast ion channels, each possessing a human homolog implicated in a channelopathy. Although yeast has been used for the study of other human disease, it has been under utilized for channelopathy research. The utility of using yeast as a model system for studying ion channels associated to human disease is illustrated using yeast lacking the GEF1 gene product that encodes the human homolog to the chloride channel CLC-3.


Assuntos
Canalopatias , Canais Iônicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Cálcio/metabolismo , Canalopatias/metabolismo , Canalopatias/fisiopatologia , Humanos , Canais Iônicos/genética , Mutação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética
6.
Cell Rep ; 12(9): 1430-44, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26299959

RESUMO

Presenilin 1 (PS1) deletion or Alzheimer's disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO) cells induces abnormal Ca(2+) efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca(2+). In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca(2+) homeostasis, but correcting lysosomal Ca(2+) deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca(2+) homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.


Assuntos
Cálcio/metabolismo , Lisossomos/metabolismo , Presenilina-1/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Autofagia , Linhagem Celular , Homeostase , Concentração de Íons de Hidrogênio , Camundongos , Presenilina-1/genética , Proteólise
7.
Dis Model Mech ; 4(1): 120-5, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20959629

RESUMO

Btn1p the yeast homolog of human CLN3, which is associated with juvenile Batten disease has been implicated in several cellular pathways. Yeast cells lacking BTN1 are unable to couple ATP hydrolysis and proton pumping activities by the vacuolar ATPase (V-ATPase). In this work, we demonstrate that changes in extracellular pH result in altered transcription of BTN1, as well as a change in the glycosylation state and localization of Btn1p. At high pH, Btn1p expression was increased and the protein was mainly located in vacuolar membranes. However, low pH decreased Btn1p expression and changed its location to undefined punctate membranes. Moreover, our results suggest that differential Btn1p localization may be regulated by its glycosylation state. Underlying pathogenic implications for Batten disease of altered cellular distribution of CLN3 are discussed.


Assuntos
Ciclinas/metabolismo , Modelos Biológicos , Lipofuscinoses Ceroides Neuronais/metabolismo , Lipofuscinoses Ceroides Neuronais/patologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Meios de Cultura/farmacologia , Ciclinas/genética , Espaço Extracelular , Regulação Fúngica da Expressão Gênica , Concentração de Íons de Hidrogênio , Processamento de Proteína Pós-Traducional , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
8.
Hum Mol Genet ; 16(9): 1007-16, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17341489

RESUMO

Lymphoblast cell lines established from individuals with juvenile Batten disease (JNCL) bearing mutations in CLN3 and yeast strains lacking Btn1p (btn1-Delta), the homolog to CLN3, have decreased intracellular levels of arginine and defective lysosomal/vacuolar transport of arginine. It is important to establish the basis for this decrease in arginine levels and whether restoration of arginine levels would be of therapeutic value for Batten disease. Previous studies have suggested that synthesis and degradation of arginine are unaltered in btn1-Delta. Using the yeast model for the Batten disease, we have determined that although btn1-Delta results in decreased intracellular arginine levels, it does not result from altered arginine uptake, arginine efflux or differences in arginine incorporation into peptides. However, expression of BTN1 is dependent on arginine and Gcn4p, the master regulator of amino acid biosynthesis. Moreover, deletion of GCN4 (gcn4-Delta), in combination with btn1-Delta, results in a very specific growth requirement for arginine. In addition, increasing the intracellular levels of arginine through overexpression of Can1p, the plasma membrane basic amino acid permease, results in increased cell volume and a severe growth defect specific to basic amino acid availability for btn1-Delta, but not wild-type cells. Therefore, elevation of intracellular levels of arginine in btn1-Delta cells is detrimental and is suggestive that btn1-Delta and perhaps mutation of CLN3 predispose cells to keep arginine levels lower than normal.


Assuntos
Arginina/toxicidade , Ciclinas/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/fisiologia , Arginina/metabolismo , Arginina/farmacocinética , Fatores de Transcrição de Zíper de Leucina Básica , Transporte Biológico , Linhagem Celular , Membrana Celular/metabolismo , Criança , Ciclinas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Teste de Complementação Genética , Humanos , Glicoproteínas de Membrana/genética , Modelos Biológicos , Chaperonas Moleculares/genética , Mutação , Lipofuscinoses Ceroides Neuronais/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa