Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(22)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684363

RESUMO

A dynamic environment, such as the one we inhabit, requires organisms to continuously update their knowledge of the setting. While the prefrontal cortex is recognized for its pivotal role in regulating such adaptive behavior, the specific contribution of each prefrontal area remains elusive. In the current work, we investigated the direct involvement of two major prefrontal subregions, the medial prefrontal cortex (mPFC, A32D + A32V) and the orbitofrontal cortex (OFC, VO + LO), in updating pavlovian stimulus-outcome (S-O) associations following contingency degradation in male rats. Specifically, animals had to learn that a particular cue, previously fully predicting the delivery of a specific reward, was no longer a reliable predictor. First, we found that chemogenetic inhibition of mPFC, but not of OFC, neurons altered the rats' ability to adaptively respond to degraded and non-degraded cues. Next, given the growing evidence pointing at noradrenaline (NA) as a main neuromodulator of adaptive behavior, we decided to investigate the possible involvement of NA projections to the two subregions in this higher-order cognitive process. Employing a pair of novel retrograde vectors, we traced NA projections from the locus ceruleus (LC) to both structures and observed an equivalent yet relatively segregated amount of inputs. Then, we showed that chemogenetic inhibition of NA projections to the mPFC, but not to the OFC, also impaired the rats' ability to adaptively respond to the degradation procedure. Altogether, our findings provide important evidence of functional parcellation within the prefrontal cortex and point at mPFC NA as key for updating pavlovian S-O associations.


Assuntos
Norepinefrina , Córtex Pré-Frontal , Animais , Córtex Pré-Frontal/fisiologia , Masculino , Ratos , Norepinefrina/metabolismo , Condicionamento Clássico/fisiologia , Recompensa , Sinais (Psicologia) , Adaptação Psicológica/fisiologia , Transmissão Sináptica/fisiologia , Ratos Long-Evans
2.
J Neurosci ; 39(1): 3-14, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389839

RESUMO

Historically, the thalamus has been viewed as little more than a relay, simply transferring information to key players of the cast, the cortex and hippocampus, without providing any unique functional contribution. In recent years, evidence from multiple laboratories researching different thalamic nuclei has contradicted this idea of the thalamus as a passive structure. Dated models of thalamic functions are being pushed aside, revealing a greater and far more complex contribution of the thalamus for cognition. In this Viewpoints article, we show how recent data support novel views of thalamic functions that emphasize integrative roles in cognition, ranging from learning and memory to flexible adaption. We propose that these apparently separate cognitive functions may indeed be supported by a more general role in shaping mental representations. Several features of thalamocortical circuits are consistent with this suggested role, and we highlight how divergent and convergent thalamocortical and corticothalamic pathways may complement each other to support these functions. Furthermore, the role of the thalamus for subcortical integration is highlighted as a key mechanism for maintaining and updating representations. Finally, we discuss future areas of research and stress the importance of incorporating new experimental findings into existing knowledge to continue developing thalamic models. The presence of thalamic pathology in a number of neurological conditions reinforces the need to better understand the role of this region in cognition.


Assuntos
Cognição/fisiologia , Tálamo/fisiologia , Animais , Humanos , Aprendizagem/fisiologia , Memória/fisiologia , Processos Mentais
3.
Cereb Cortex ; 28(7): 2313-2325, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541407

RESUMO

The medial prefrontal cortex (mPFC) has long been considered a critical site in action control. However, recent evidence indicates that the contribution of cortical areas to goal-directed behavior likely extends beyond mPFC. Here, we examine the function of both insular (IC) and ventrolateral orbitofrontal (vlOFC) cortices in action-dependent learning. We used chemogenetics to study the consequences of IC or vlOFC inhibition on acquisition and performance of instrumental actions using the outcome devaluation task. Rats first learned to associate actions with desirable outcomes. Then, one of these outcomes was devalued and we assessed the rats' choice between the 2 actions. Typically, rats will bias their selection towards the action that delivers the still valued outcome. We show that chemogenetic-induced inhibition of IC during choice abolishes goal-directed control whereas inhibition during instrumental acquisition is without effect. IC is therefore necessary for action selection based on current outcome value. By contrast, vlOFC inhibition during acquisition or the choice test impaired goal-directed behavior but only following a shift in the instrumental contingencies. Our results provide clear evidence that vlOFC plays a critical role in action-dependent learning, which challenges the popular idea that this region of OFC is exclusively involved in stimulus-dependent behaviors.


Assuntos
Comportamento de Escolha , Condicionamento Operante/fisiologia , Extinção Psicológica/fisiologia , Objetivos , Córtex Pré-Frontal/fisiologia , Potenciais de Ação/fisiologia , Animais , Mapeamento Encefálico , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Técnicas In Vitro , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Córtex Pré-Frontal/citologia , Ratos , Ratos Long-Evans , Transdução Genética , Proteína Vermelha Fluorescente
4.
J Neurosci ; 35(38): 13183-93, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400947

RESUMO

The orbitofrontal cortex (OFC) is known to play a crucial role in learning the consequences of specific events. However, the contribution of OFC thalamic inputs to these processes is largely unknown. Using a tract-tracing approach, we first demonstrated that the submedius nucleus (Sub) shares extensive reciprocal connections with the OFC. We then compared the effects of excitotoxic lesions of the Sub or the OFC on the ability of rats to use outcome identity to direct responding. We found that neither OFC nor Sub lesions interfered with the basic differential outcomes effect. However, more specific tests revealed that OFC rats, but not Sub rats, were disproportionally relying on the outcome, rather than on the discriminative stimulus, to guide behavior, which is consistent with the view that the OFC integrates information about predictive cues. In subsequent experiments using a Pavlovian contingency degradation procedure, we found that both OFC and Sub lesions produced a severe deficit in the ability to update Pavlovian associations. Altogether, the submedius therefore appears as a functionally relevant thalamic component in a circuit dedicated to the integration of predictive cues to guide behavior, previously conceived as essentially dependent on orbitofrontal functions. Significance statement: In the present study, we identify a largely unknown thalamic region, the submedius nucleus, as a new functionally relevant component in a circuit supporting the flexible use of predictive cues. Such abilities were previously conceived as largely dependent on the orbitofrontal cortex. Interestingly, this echoes recent findings in the field showing, in research involving an instrumental setup, an additional involvement of another thalamic nuclei, the parafascicular nucleus, when correct responding requires an element of flexibility (Bradfield et al., 2013a). Therefore, the present contribution supports the emerging view that limbic thalamic nuclei may contribute critically to adaptive responding when an element of flexibility is required after the establishment of initial learning.


Assuntos
Condicionamento Psicológico/fisiologia , Sinais (Psicologia) , Núcleo Mediodorsal do Tálamo/fisiologia , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Acústica , Análise de Variância , Animais , Condicionamento Operante , Dextranos/metabolismo , Discriminação Psicológica , Agonistas de Aminoácidos Excitatórios/toxicidade , Extinção Psicológica/fisiologia , Masculino , N-Metilaspartato/toxicidade , Valor Preditivo dos Testes , Córtex Pré-Frontal/lesões , Ratos , Ratos Long-Evans
5.
Eur J Neurosci ; 44(3): 1972-86, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27319754

RESUMO

There is a growing interest in determining the functional contribution of thalamic inputs to cortical functions. In the context of adaptive behaviours, identifying the precise role of the mediodorsal thalamus (MD) in particular remains difficult despite the large amount of experimental data available. A better understanding of the thalamocortical connectivity of this region may help to capture its functional role. To address this issue, this study focused exclusively on the specific connections from the MD to the prefrontal cortex (PFC) by means of direct comparisons of labelling produced by single and dual injections of retrograde tracers in the different subdivisions of the PFC in the rat. We show that at least three parallel and essentially separate thalamocortical pathways originate from the MD, as follows: projections to the dorsal (1) and the ventral (2) subdivisions of the mPFC follow a mediolateral topography at the thalamic level (i.e. medial thalamic neurons target the mPFC ventrally whereas lateral thalamic neurons project dorsally), whereas a considerable innervation to the OFC (3) includes thalamic cells projecting to both the lateral and the ventral OFC subdivisions. These observations provide new insight on the functions of the MD and suggest a specific focus on each of these pathways for future functional studies.


Assuntos
Córtex Pré-Frontal/fisiologia , Tálamo/fisiologia , Animais , Masculino , Vias Neurais , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Ratos , Ratos Long-Evans , Tálamo/citologia
6.
Neurobiol Learn Mem ; 125: 80-4, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26254715

RESUMO

The limbic thalamus is a heterogeneous structure with distinctive cortical connectivity. A recent review suggests that the mediodorsal thalamic nucleus (MD), unlike the anterior thalamic nuclei (ATN), may be involved in selecting relevant information in tasks relying on executive functions. We compared the effects of excitotoxic lesions of the MD or the ATN on the acquisition of a simple conditional discrimination in rats. When required to choose from two levers according to auditory or visual cues, ATN rats and sham-lesioned rats performed to the same levels and displayed similar acquisition curves. Under the same conditions, MD rats' acquisition of the task was markedly delayed. This group nevertheless attained nearly normal performances after more extensive training. Furthermore, all rats learned reversal of the original discrimination at the same rate. These results highlight functional specialization within the limbic thalamus and support the notion that MD contributes to the identification of relevant dimensions in conditional tasks during the initial stages of acquisition.


Assuntos
Núcleos Anteriores do Tálamo/fisiopatologia , Condicionamento Operante/fisiologia , Aprendizagem por Discriminação/fisiologia , Núcleo Mediodorsal do Tálamo/fisiopatologia , Estimulação Acústica , Animais , Núcleos Anteriores do Tálamo/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Aprendizagem por Discriminação/efeitos dos fármacos , Masculino , Núcleo Mediodorsal do Tálamo/efeitos dos fármacos , N-Metilaspartato/toxicidade , Estimulação Luminosa , Ratos , Ratos Long-Evans
7.
Neuron ; 112(6): 893-908, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38295791

RESUMO

Executive control, the ability to organize thoughts and action plans in real time, is a defining feature of higher cognition. Classical theories have emphasized cortical contributions to this process, but recent studies have reinvigorated interest in the role of the thalamus. Although it is well established that local thalamic damage diminishes cognitive capacity, such observations have been difficult to inform functional models. Recent progress in experimental techniques is beginning to enrich our understanding of the anatomical, physiological, and computational substrates underlying thalamic engagement in executive control. In this review, we discuss this progress and particularly focus on the mediodorsal thalamus, which regulates the activity within and across frontal cortical areas. We end with a synthesis that highlights frontal thalamocortical interactions in cognitive computations and discusses its functional implications in normal and pathological conditions.


Assuntos
Função Executiva , Tálamo , Função Executiva/fisiologia , Vias Neurais/fisiologia , Tálamo/fisiologia , Cognição/fisiologia , Lobo Frontal , Córtex Pré-Frontal/fisiologia
8.
Hippocampus ; 23(5): 392-404, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23436341

RESUMO

Damage to anterior thalamic nuclei (ATN) is a well-known cause of diencephalic pathology that produces a range of cognitive deficits reminiscent of a hippocampal syndrome. Anatomical connections of the ATN also extend to cerebral areas that support affective cognition. Enriched environments promote recovery of declarative/relational memory after ATN lesions and are known to downregulate emotional behaviors. Hence, the performance of standard-housed and enriched ATN rats in a range of behavioral tasks engaging affective cognition was compared. ATN rats exhibited reduced anxiety responses in the elevated plus maze, increased activity and reduced corticosterone responses when exploring an open field, and delayed acquisition of a conditioned contextual fear response. ATN rats also exhibited reduced c-Fos and phosphorylated cAMP response element-binding protein (pCREB) immunoreactivity in the hippocampal formation and the amygdala after completion of the contextual fear test. Marked c-Fos hypoactivity and reduced pCREB levels were also evident in the granular retrosplenial cortex and, to a lesser extent, in the anterior cingulate cortex. Unlike standard-housed ATN rats, enriched ATN rats expressed virtually no fear of the conditioned context. These results show that the ATN regulate affective cognition and that damage to this region may produce markedly different behavioral effects as a function of environmental housing conditions.


Assuntos
Afeto/fisiologia , Núcleos Anteriores do Tálamo/fisiologia , Cognição/fisiologia , Meio Ambiente , Animais , Núcleos Anteriores do Tálamo/lesões , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Proteína de Ligação a CREB/metabolismo , Condicionamento Psicológico , Corticosterona/sangue , Agonistas de Aminoácidos Excitatórios/toxicidade , Comportamento Exploratório/fisiologia , Medo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , N-Metilaspartato/toxicidade , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans
9.
Elife ; 122023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36804007

RESUMO

In a constantly changing environment, organisms must track the current relationship between actions and their specific consequences and use this information to guide decision-making. Such goal-directed behaviour relies on circuits involving cortical and subcortical structures. Notably, a functional heterogeneity exists within the medial prefrontal, insular, and orbitofrontal cortices (OFC) in rodents. The role of the latter in goal-directed behaviour has been debated, but recent data indicate that the ventral and lateral subregions of the OFC are needed to integrate changes in the relationships between actions and their outcomes. Neuromodulatory agents are also crucial components of prefrontal functions and behavioural flexibility might depend upon the noradrenergic modulation of the prefrontal cortex. Therefore, we assessed whether noradrenergic innervation of the OFC plays a role in updating action-outcome relationships in male rats. We used an identity-based reversal task and found that depletion or chemogenetic silencing of noradrenergic inputs within the OFC rendered rats unable to associate new outcomes with previously acquired actions. Silencing of noradrenergic inputs in the prelimbic cortex or depletion of dopaminergic inputs in the OFC did not reproduce this deficit. Together, our results suggest that noradrenergic projections to the OFC are required to update goal-directed actions.


Assuntos
Objetivos , Roedores , Ratos , Masculino , Animais , Córtex Pré-Frontal/fisiologia , Motivação , Transdução de Sinais
10.
Curr Res Neurobiol ; 3: 100057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36281274

RESUMO

The ability to engage into flexible behaviors is crucial in dynamic environments. We recently showed that in addition to the well described role of the orbitofrontal cortex (OFC), its thalamic input from the submedius thalamic nucleus (Sub) also contributes to adaptive responding during Pavlovian degradation. In the present study, we examined the role of the mediodorsal thalamus (MD) which is the other main thalamic input to the OFC. To this end, we assessed the effect of both pre- and post-training MD lesions in rats performing a Pavlovian contingency degradation task. Pre-training lesions mildly impeded the establishment of stimulus-outcome associations during the initial training of Pavlovian conditioning without interfering with Pavlovian degradation training when the sensory feedback provided by the outcome rewards were available to animals. However, we found that both pre- and post-training MD lesions produced a selective impairment during a test conducted under extinction conditions, during which only current mental representation could guide behavior. Altogether, these data suggest a role for the MD in the successful encoding and representation of Pavlovian associations.

11.
J Neurosci ; 29(10): 3302-6, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19279267

RESUMO

Recent studies have shown that the anterior (ATN) and lateral thalamic nuclei (including the intralaminar nuclei; ILN/LT) play different roles in memory processes. These nuclei have prominent direct and indirect connections with the hippocampal system and/or the prefrontal cortex and may thus participate in the time-dependent reorganization of memory traces during systems-level consolidation. We investigated whether ATN or ILN/LT lesions in rats influenced acquisition and subsequent retrieval of spatial memory in a Morris water maze. Retrieval was assessed with a probe trial after a short (5 d, recent memory) or a long (25 d, remote memory) postacquisition delay. The ATN group showed impaired acquisition compared with the Sham controls and ILN/LT groups, which did not differ during acquisition, and exhibited no preference for the target quadrant during the recent or remote memory probe trials. In contrast, probe trial performance in rats with ILN/LT lesions differed according to the age of the memory, with accurate spatial retrieval for the recent memory probe trial but impaired retrieval during the remote memory one. These findings confirm that ATN but not ILN/LT lesions disrupt the acquisition of spatial memory and provide new evidence that the ILN/LT region contributes to remote memory processing. Thus, the lateral thalamus may modulate some aspects of remote memory formation and/or retrieval during the course of systems-level consolidation.


Assuntos
Núcleos Intralaminares do Tálamo/fisiologia , Memória/fisiologia , Comportamento Espacial/fisiologia , Animais , Masculino , Aprendizagem em Labirinto/fisiologia , Ratos , Ratos Long-Evans
12.
Brain Struct Funct ; 225(3): 955-968, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32146556

RESUMO

Memory persistence refers to the process by which a temporary, labile memory is transformed into a stable and long-lasting state. This process involves a reorganization of brain networks at systems level, which requires functional interactions between the hippocampus (HP) and medial prefrontal cortex (mPFC). The reuniens (Re) and rhomboid (Rh) nuclei of the ventral midline thalamus are bidirectionally connected with both regions, and we previously demonstrated their crucial role in spatial memory persistence. We now investigated, in male rats, whether specific manipulations of ReRh activity also affected contextual and cued fear memory persistence. We showed that the permanent ReRh lesion impaired remote, but not recent contextual fear memory. Tone-cued recent and remote fear memory were spared by the lesion. In intact rats, acute chemogenetic ReRh inhibition conducted before recall of either recent or remote contextual fear memories produced no effect, indicating that the ReRh nuclei are not required for retrieval of such memories. This was also suggested by a functional cellular imaging approach, as retrieval did not alter c-fos expression in the ReRh. Collectively, these data are compatible with a role for the ReRh in 'off-line' consolidation of a contextual fear memory and support the crucial importance of ventral midline thalamic nuclei in systems consolidation of memories.


Assuntos
Sinais (Psicologia) , Medo/fisiologia , Memória/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Animais , Condicionamento Clássico , Masculino , Aprendizagem em Labirinto/fisiologia , Rememoração Mental/fisiologia , Neurônios/fisiologia , Ratos Long-Evans , Memória Espacial/fisiologia
13.
Front Mol Neurosci ; 12: 303, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920534

RESUMO

An important issue in contemporary neuroscience is to identify functional principles at play within neural circuits. The reciprocity of the connections between two distinct brain areas appears as an intriguing feature of some of these circuits. This organization has been viewed as "re-entry," a process whereby two or more brain regions concurrently stimulate and are stimulated by each other, thus supporting the synchronization of neural firing required for rapid neural integration. However, until relatively recently, it was not possible to provide a comprehensive functional assessment of such reciprocal pathways. In this Brief Research Report, we highlight the use of a chemogenetic strategy to target projection-defined neurons in reciprocally connected areas through CAV-2 mediated interventions in the rat. Specifically, we targeted the bidirectional pathways between the dorsomedial prefrontal cortex (dmPFC) and the mediodorsal thalamus, as well as those connecting the insular cortex (IC) and the basolateral complex of the amygdala (BLA). These data showcase the usefulness of CAV-2-related strategies to address circuit-level issues. Moreover, we illustrate the inherent limitation of Cre-dependent adeno-associated virues (AAVs) with "leaked" expression of the gene of interest in the absence of Cre and highlight the need for appropriate control conditions.

14.
J Neuroendocrinol ; 31(11): e12802, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31613407

RESUMO

Vitamin A and its active metabolite, retinoic acid (RA), play a key role in the maintenance of cognitive functions in the adult brain. Depletion of RA using the vitamin A deficiency (VAD) model in Wistar rats leads to spatial memory deficits in relation to elevated intrahippocampal basal corticosterone (CORT) levels and increased hippocampal 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) activity. All of these effects are normalised by vitamin A supplementation. However, it is unknown whether vitamin A status also modulates contextual fear conditioning (CFC) in a glucocorticoid-associated fear memory task dependent on the functional integrity of the hippocampus. In the present study, we investigated the impact of VAD and vitamin A supplementation in adult male rats on fear memory processing, plasma CORT levels, hippocampal retinoid receptors and 11ß-HSD1 expression following a novelty-induced stress. We also examined whether vitamin A supplementation or a single injection of UE2316, a selective 11ß-HSD1 inhibitor, known to modulate local glucocorticoid levels, had any beneficial effects on contextual fear memory and biochemical parameters in VAD rats. We provide evidence that VAD rats exhibit a decreased fear conditioning response during training with a poor contextual fear memory 24 hours later. These VAD-induced cognitive impairments are associated with elevated plasma CORT levels under basal conditions, as well as following a stressful event, with saturated CORT release, altered hippocampal retinoid receptors and 11ß-HSD1 expression. Vitamin A supplementation normalises VAD-induced fear conditioning training deficits and all biochemical effects, although it cannot prevent fear memory deficits. Moreover, a single injection of UE2316 not only impairs contextual fear memory, but also reduces plasma CORT levels, regardless of the vitamin A status and decreases slightly hippocampal 11ß-HSD1 activity in VAD rats following stress. The present study highlights the importance of vitamin A status with respect to modulating fear memory conditioning in relation to plasma CORT levels and hippocampal 11ß-HSD1.


Assuntos
Medo , Glucocorticoides/metabolismo , Transtornos da Memória/etiologia , Deficiência de Vitamina A/complicações , Deficiência de Vitamina A/psicologia , Animais , Cognição/efeitos dos fármacos , Cognição/fisiologia , Condicionamento Psicológico/efeitos dos fármacos , Corticosterona/sangue , Suplementos Nutricionais , Medo/efeitos dos fármacos , Medo/psicologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Transtornos da Memória/sangue , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Estresse Psicológico , Vitamina A/farmacologia , Vitamina A/uso terapêutico , Deficiência de Vitamina A/dietoterapia , Deficiência de Vitamina A/patologia
15.
Elife ; 82019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31012845

RESUMO

The ability to flexibly use knowledge is one cardinal feature of goal-directed behaviors. We recently showed that thalamocortical and corticothalamic pathways connecting the medial prefrontal cortex and the mediodorsal thalamus (MD) contribute to adaptive decision-making (Alcaraz et al., 2018). In this study, we examined the impact of disconnecting the MD from its other main cortical target, the orbitofrontal cortex (OFC) in a task assessing outcome devaluation after initial instrumental training and after reversal of action-outcome contingencies. Crossed MD and OFC lesions did not impair instrumental performance. Using the same approach, we found however that disconnecting the OFC from its other main thalamic afferent, the submedius nucleus, produced a specific impairment in adaptive responding following action-outcome reversal. Altogether, this suggests that multiple thalamocortical circuits may act synergistically to achieve behaviorally relevant functions.


Assuntos
Adaptação Psicológica , Vias Neurais/fisiologia , Córtex Pré-Frontal/fisiologia , Tálamo/fisiologia , Animais , Comportamento Animal , Masculino , Ratos Long-Evans
16.
Hippocampus ; 18(10): 996-1007, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18548579

RESUMO

The anterior thalamic (AT) nuclei constitute an important component of an extended hippocampal-diencephalic system, and severe persisting memory deficits are normally found after AT damage. This study examined whether postoperative enrichment promotes the recovery of the flexible use of spatial representations in rats with AT lesions. After training to swim from a single constant start position to a submerged platform in a Morris water maze, rats with AT lesions that were housed in standard cages (AT-Std) performed poorly when required to swim to the platform from novel start positions during probe trials. By contrast, rats with AT lesions but housed in enriched environments (AT-Enr), like sham-lesion rats, showed relatively little disruption when tested with novel start positions. AT-Std rats also initially showed impaired acquisition of the task, whereas AT-Enr rats learned at a similar rate to that of the Sham-Std group. Beneficial effects of enrichment were replicated in the subsequent standard water maze procedure that used varying start positions throughout training to acquire a new platform location. Although it is clear that AT damage can severely disrupt episodic-like memory processes, and appear to be a core part of the interlinked neural systems subserving episodic memory, the current findings strongly encourage study on the adaptive response of the brain to thalamic lesions and prospects for the development of rehabilitation programs in cases of anterograde amnesia associated with diencephalic injury.


Assuntos
Núcleos Anteriores do Tálamo/fisiopatologia , Abrigo para Animais , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Comportamento Espacial/fisiologia , Animais , Núcleos Anteriores do Tálamo/lesões , Lesões Encefálicas/reabilitação , Diencéfalo/lesões , Diencéfalo/fisiopatologia , Meio Ambiente , Feminino , Hipocampo/lesões , Hipocampo/fisiopatologia , Ratos
17.
Neurobiol Learn Mem ; 90(1): 71-80, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18296080

RESUMO

Medial thalamic damage is a common cause of severe memory disruption in humans. Both the anterior thalamic nuclei (ATN) and the intralaminar thalamic nuclei (ILN) have been suggested as primary sites of diencephalic injury underlying learning and memory deficits, but their respective roles have yet to be resolved. The present study explicitly compared two spatial memory tasks in male PVGc hooded rats with selective neurotoxic lesions to either (1) the ATN or (2) the rostral ILN (and adjacent lateral mediodorsal thalamic nuclei; ILN/LT lesions). As predicted, the ATN group, but not the ILN/LT group, exhibited clear deficits in the Morris water maze task for the initial acquisition of a fixed hidden platform and its reversal to a new position. The second task examined acquisition of egocentric spatial reference memory for a left or right body turn, using any three arms in an 8-arm water maze on any given trial; contrary to predictions, both lesion groups performed as well as the Sham group. The lack of deficits in ILN/LT rats on this second task contrasted with previous findings reporting a detrimental effect of ILN/LT lesions on egocentric working memory. The clear dissociation between the influence of ATN and ILN/LT lesions with respect to allocentric spatial reference memory in the Morris maze emphasizes that caution is required when interpreting the effects of non-ATN thalamic lesions on spatial memory when the lesions encroach substantial areas of the adjacent ATN region.


Assuntos
Núcleos Anteriores do Tálamo/fisiologia , Núcleos Intralaminares do Tálamo/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Percepção Espacial/fisiologia , Animais , Masculino , Orientação/fisiologia , Ratos , Ratos Endogâmicos , Natação
18.
Behav Brain Res ; 192(1): 7-11, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18222007

RESUMO

After having underlined the ambiguities of the concept of plasticity and the dangers of its purely metaphoric use in neurobiology, it is suggested that we return to a more precise definition of the structure, the operating principles and the function of the "systemic" unit or "integron" relevant to the particular level of analysis in question. Any change can then be described as a modification of function, a change in the operation principles, or an alteration of the material structure of the system. It is suggested that the term plastic should be restricted to describing, among the possible variations in the operating principles or the function of a given system, any lasting alteration of the connectivity network of the system under the influence of an external force or environmental constraint. Therefore, systematic or random variations of performance, functional flexibility or the vicarious(1) processes or strategies that can be found in a rigidly wired system are not justified examples of plasticity.


Assuntos
Encéfalo/fisiologia , Plasticidade Neuronal/fisiologia , Terminologia como Assunto , História do Século XX , Rede Nervosa/fisiologia , Neurobiologia/história , Semântica
19.
Behav Brain Res ; 192(1): 2-7, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18222008

RESUMO

Although rejected for the most part of the 20th Century, the idea of brain plasticity began to receive wide acceptance from the 1970s. Yet there has been relatively little theoretical comment on the definition and use of "plasticity" in the field of neurobiology. An early exception to this lack of critical reflection on neural plasticity was provided by Jacques Paillard in a seminal paper that he published in 1976 [Paillard J. Réflexions sur l'usage du concept de plasticité en neurobiology. J Psychol 1976;1:33-47]. As this valuable contribution was published in French, the present authors provide an English adaptation to help convey his ideas to an international audience, together with a contemporary commentary on this paper. Paillard's definition of the term "plasticity" is probably as pertinent today as it was 30 years ago, especially in terms of its relevance to multiple levels of analysis of brain function (molecular, cellular, systemic). Sadly, Jacques Paillard died in 2006; our comments therefore also include a brief biographical tribute to this outstanding neuroscientist.


Assuntos
Encéfalo/fisiologia , Plasticidade Neuronal/fisiologia , Neurociências/história , Adaptação Fisiológica/fisiologia , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , França , História do Século XX , Humanos , Modelos Neurológicos , Publicações Periódicas como Assunto/história
20.
Elife ; 72018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29405119

RESUMO

Highly distributed neural circuits are thought to support adaptive decision-making in volatile and complex environments. Notably, the functional interactions between prefrontal and reciprocally connected thalamic nuclei areas may be important when choices are guided by current goal value or action-outcome contingency. We examined the functional involvement of selected thalamocortical and corticothalamic pathways connecting the dorsomedial prefrontal cortex (dmPFC) and the mediodorsal thalamus (MD) in the behaving rat. Using a chemogenetic approach to inhibit projection-defined dmPFC and MD neurons during an instrumental learning task, we show that thalamocortical and corticothalamic pathways differentially support goal attributes. Both pathways participate in adaptation to the current goal value, but only thalamocortical neurons are required to integrate current causal relationships. These data indicate that antiparallel flow of information within thalamocortical circuits may convey qualitatively distinct aspects of adaptive decision-making and highlight the importance of the direction of information flow within neural circuits.


Assuntos
Comportamento Animal , Córtex Cerebral/fisiologia , Objetivos , Vias Neurais/fisiologia , Tálamo/fisiologia , Animais , Tomada de Decisões , Ratos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa