Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Vis Exp ; (173)2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34309598

RESUMO

Intervertebral disc (IVD) degeneration is a leading cause of low back pain and it entails a high degree of impairment for the affected individuals. To decode disc degeneration and to be able to develop regenerative approaches a thorough understanding of the cellular biology of the IVD is essential. One aspect of this biology that still remains unanswered is the question of how cells are spatially arranged in a physiological state and during degeneration. The biological properties of the IVD and its availability make this tissue difficult to analyze. The present study investigates spatial chondrocyte organization in the anulus fibrosus from early embryonic development to end-stage degeneration. An optical sectioning method (Apotome) is applied to perform high resolution staining analyses using bovine embryonic tissue as an animal model and human disc tissue obtained from patients undergoing spine surgery. From a very high chondrocyte density in the early embryonic bovine disc, the number of cells decreases during gestation, growth, and maturation. In human discs, an increase in cellular density accompanied the progression of tissue degeneration. As had already been demonstrated in articular cartilage, cluster formation represents a characteristic feature of advanced disc degeneration.


Assuntos
Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Animais , Bovinos , Desenvolvimento Embrionário , Humanos
2.
Sci Rep ; 11(1): 9783, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963289

RESUMO

Using two-dimensional top-down view microscopy, researchers have recently described chondrocytes as being spatially arranged in distinct patterns such as strings, double strings, and small and large clusters. Because of the seeming association of these changes with tissue degeneration, they have been proposed as an image-based biomarker for early osteoarthritis (OA) staging. The aim of our study was to investigate the spatial arrangement of chondrocytes in human articular cartilage in a 3D fashion and to evaluate the 3D changes of these patterns in the context of local tissue destruction. Decalcified femoral condyle resections from the load-bearing area were analysed in 3D for their spatial chondrocyte organisation by means of fluorescence microscopy and synchrotron-radiation micro-computed tomography (SR-µCT). In intact cartilage chondrocyte strings can be found in the superficial, transitional and deep zones. The proposed pattern changes accompanying tissue destruction could be located not just along the surface but also through all layers of cartilage. Each spatial pattern was characterised by a different cellular density (the only exception being between single and double strings with p = 0.062), with cellular density significantly increasing alongside the increase in local tissue degeneration as defined by the chondrocyte patterns. We can thus corroborate that the proposed cellular spatial changes are a three-dimensional function of local tissue degeneration, underlining their relevance as an image-based biomarker for the early diagnosis and description of OA.Clinical trial registration number: Project number of the ethics committee of the University of Tübingen:171/2014BO2.


Assuntos
Cartilagem Articular , Condrócitos , Imageamento Tridimensional , Osteoartrite do Joelho , Microtomografia por Raio-X , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Condrócitos/patologia , Feminino , Humanos , Masculino , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa