RESUMO
Modern life science research is a collaborative effort. Few research groups can single-handedly support the necessary equipment, expertise and personnel needed for the ever-expanding portfolio of technologies that are required across multiple disciplines in today's life science endeavours. Thus, research institutes are increasingly setting up scientific core facilities to provide access and specialised support for cutting-edge technologies. Maintaining the momentum needed to carry out leading research while ensuring high-quality daily operations is an ongoing challenge, regardless of the resources allocated to establish such facilities. Here, we outline and discuss the range of activities required to keep things running once a scientific imaging core facility has been established. These include managing a wide range of equipment and users, handling repairs and service contracts, planning for equipment upgrades, renewals, or decommissioning, and continuously upskilling while balancing innovation and consolidation.
Assuntos
Disciplinas das Ciências Biológicas , Disciplinas das Ciências Biológicas/métodosRESUMO
Despite the central role of aromaticity in the chemistry of expanded porphyrins, the evaluation of aromaticity remains difficult for these extended macrocycles. The presence of multiple conjugation pathways and different planar and nonplanar π-conjugation topologies makes the quantification of global and local aromaticity even more challenging. In neutral expanded porphyrins, the predominance of the aromatic conjugation pathway passing through the imine-type nitrogens and circumventing the amino NH groups is established. However, for charged macrocycles, the question about the main conjugation circuit remains open. Accordingly, different conjugation pathways in a set of neutral, anionic, and cationic expanded porphyrins were investigated by means of several aromaticity indices rooted in the structural, magnetic, and electronic criteria. Overall, our results reveal the predominance of the conjugation pathway that passes through all nitrogen atoms to describe the aromaticity of deprotonated expanded porphyrins, while the outer pathway through the perimeter carbon atoms becomes the most aromatic in protonated macrocycles. In nonplanar and charged macrocycles, a discrepancy between electronic and magnetic descriptors is observed. Nevertheless, our work demonstrates AVmin remains the best tool to determine the main conjugation pathway of expanded porphyrins.
RESUMO
Due to the enormous size of the chemical compound space, usually only small regions are traversed with traditional direct molecular design approaches making the discovery for novel functionalized molecules for nonlinear optical applications challenging. By applying inverse molecular design algorithms, we aim to efficiently explore larger regions of the compound space in search of promising hexaphyrin-based molecular switches as measured by their first-hyperpolarizability (ßHRS) contrast. We focus on the 28R â 30R switch with a functionalization pattern allowing for centrosymmetric OFF states yielding zero ßHRS response. This switch is particularly challenging as full meso-substitution with a single type of functional group or core-modifications result in almost no contrast enhancement. We carried out four inverse design procedures during which two sets of core-modifications and three sets of meso-substitutions sites were systematically optimized. All 4 optimal switches are characterized by a mix of meso-substitutions and core-modifications, of which the best performing switch yields a 10-fold improvement over the parent macrocycle. Throughout the inverse design procedures, we collected and analyzed a database biased towards high NLO contrasts that contains 277 different patterns for hexaphyrin-based switches. We derived three design rules to obtain highly functional 28R â 30R NLO switches: (I) a combination of 2 strong EWG and 1 EDG group is the ideal recipe for increasing the NLO contrast, though their position also plays an important role. (II) The type of core-modification is less important when only the diagonal positions are core-modified. Switches with 4 core-modifications show a clear preference for oxygen. (III) Keeping centrosymmetry in the OFF state remains highly beneficial given the investigated functionalization pattern. Finally, we have demonstrated that combining meso-substitutions with core-modifications can synergistically improve the NLO contrast.
RESUMO
Expanded porphyrins provide a versatile route to molecular switching devices due to their ability to shift between several π-conjugation topologies encoding distinct properties. DFT remains the workhorse for modeling such extended macrocycles, when taking into account their size and huge conformational flexibility. Nevertheless, the stability of Hückel and Möbius conformers depends on a complex interplay of different factors, such as hydrogen bonding, π···π stacking, steric effects, ring strain, and electron delocalization. As a consequence, the selection of an exchange-correlation functional for describing the energy profile of topological switches is very difficult. For these reasons, we have examined the performance of a variety of wave function methods and density functionals for describing the thermochemistry and kinetics of topology interconversions across a wide range of macrocycles. Especially for hexa- and heptaphyrins, the Möbius structures have a stronger degree of static correlation than the Hückel and twisted-Hückel structures, and as a result the relative energies of singly twisted structures are a challenging test for electronic structure methods. Comparison of limited orbital space full CI calculations with CCSD(T) calculations within the same active spaces shows that post-CCSD(T) correlation contributions to relative energies are very minor. At the same time, relative energies are weakly sensitive to further basis set expansion, as proven by the minor energy differences between the extrapolated MP2/CBS energies estimated from cc-pV{T,Q}Z, diffuse-augmented heavy-aug-cc-pV{T,Q}Z and explicitly correlated MP2-F12/cc-pVDZ-F12 calculations. Hence, our CCSD(T) reference values are reasonably well-converged in both 1-particle and n-particle spaces. While conventional MP2 and MP3 yield very poor results, SCS-MP2 and particularly SOS-MP2 and SCS-MP3 agree to better than 1 kcal mol-1 with the CCSD(T) relative energies. Regarding DFT methods, the range-separated double hybrids, such as ωB97M(2) and B2GP-PLYP, outperform other functionals with RMSDs of 0.6 and 0.8 kcal mol-1, respectively. While the original DSD-PBEP86 double hybrid performs fairly poorly for these extended π-systems, the errors drop down to 1.9 kcal mol-1 for the revised revDOD-PBEP86-NL, which eliminates the same-spin correlation energy. Minnesota meta-GGA functionals with high fractions of exact exchange (M06-2X and M08-HX) also perform reasonably well, outperforming more robust and significantly less empirically parametrized functionals like SCAN0-D3.
RESUMO
The importance of axially chiral biaryls has risen steeply in the recent decades. This structural motif proved to be successful in catalytic asymmetric synthesis and the configuration of the biaryl axis is decisive for the biological activity. A new approach for the atroposelective synthesis of biaryls would be through a cycloaddition between an enantiopure phenyl-substituted thiophene S-oxide and an alkyne. Importantly, the chiral center of the thiophene S-oxide needs to be stable enough to avoid pyramidal inversion during the cycloaddition. Considering that the racemization of thiophene monoxides has been scarcely investigated so far, we perform a thorough quantum chemical study on the inversion barriers of a large number of chiral thiophene S-oxide derivatives. Our main goal is to identify substitution patterns leading to stable atropisomers at room temperature. Appealingly, the role of stereoelectronic effects and the position of the substituents as well as the importance of aromaticity on the pyramidal inversion barrier are elucidated for the first time.
RESUMO
The role of aromaticity in porphyrinoids is a current subject of debate due to the intricate structure of these macrocycles, which can adopt Hückel, Möbius and even figure-eight conformers. One of the main challenges in these large π-conjugated structures is identifying the most conjugated pathway because, among aromaticity descriptors, there are very few that can be applied coherently to this variety of conformers. In this paper, we have investigated the conjugated pathways in nine porphyrinoid compounds using several aromaticity descriptors, including BLA, BOA, FLU and HOMA, as well as the recently introduced AV1245 and AVmin indices. All the indices agree on the general features of these compounds, such as the fulfillment of Hückel's rule or which compounds should be more or less aromatic from the series. However, our results evince the difficulty of finding the most aromatic pathway in the macrocycle for large porphyrinoids. In fact, only AVmin is capable of recognizing the annulene pathway as the most aromatic one in the nine studied structures. Finally, we study the effect of the exchange in DFT functionals on the description of the aromaticity of the porphyrinoids. The amount of exact exchange quantitatively changes the picture for most aromaticity descriptors, AVmin being the only exception that shows the same qualitative results in all cases.
RESUMO
With their versatile molecular topology and aromaticity, porphyrinoid systems combine remarkable chemistry with interesting photophysical properties and nonlinear optical properties. Hence, the field of application of porphyrinoids is very broad ranging from near-infrared dyes to opto-electronic materials. From previous experimental studies, aromaticity emerges as an important concept in determining the photophysical properties and two-photon absorption cross sections of porphyrinoids. Despite a considerable number of studies on porphyrinoids, few investigate the relationship between aromaticity, UV/vis absorption spectra and nonlinear properties. To assess such structure-property relationships, we performed a computational study focusing on a series of Hückel porphyrinoids to: (i) assess their (anti)aromatic character; (ii) determine the fingerprints of aromaticity on the UV/vis spectra; (iii) evaluate the role of aromaticity on the NLO properties. Using an extensive set of aromaticity descriptors based on energetic, magnetic, structural, reactivity and electronic criteria, the aromaticity of [4n+2] π-electron porphyrinoids was evidenced as was the antiaromaticity for [4n] π-electron systems. In agreement with previous studies, the absorption spectra of aromatic systems display more intense B and Q bands in comparison to their antiaromatic homologues. The nature of these absorption bands was analyzed in detail in terms of polarization, intensity, splitting and composition. Finally, quantities such as the average polarizability and its anisotropy were found to be larger in aromatic systems, whereas first and second hyperpolarizability are influenced by the interplay between aromaticity, planarity and molecular symmetry. To conclude, aromaticity dictates the photophysical properties in porphyrinoids, whereas it is not the only factor determining the magnitude of NLO properties.
Assuntos
Porfirinas/química , Espectrofotometria Ultravioleta/métodos , Anisotropia , Isomerismo , Dinâmica não Linear , Relação Estrutura-AtividadeRESUMO
Noncovalent interactions involving aromatic rings, such as π-stacking and CH/π interactions, are central to many areas of modern chemistry. However, recent studies proved that aromaticity is not required for stacking interactions, since similar interaction energies were computed for several aromatic and aliphatic dimers. Herein, the nature and origin of π/π, σ/σ, and σ/π dispersion interactions has been investigated by using dispersion-corrected density functional theory, energy decomposition analysis, and the recently developed noncovalent interaction (NCI) method. Our analysis shows that π/π and σ/σ stacking interactions are equally important for the benzene and cyclohexane dimers, explaining why both compounds have similar boiling points. Also, similar dispersion forces are found in the benzeneâ â â methane and cyclohexaneâ â â methane complexes. However, for systems larger than naphthalene, there are enhanced stacking interactions in the aromatic dimers adopting a parallel-displaced configuration compared to the analogous saturated systems. Although dispersion plays a decisive role in stabilizing all the complexes, the origin of the π/π, σ/σ, and σ/π interactions is different. The NCI method reveals that the dispersion interactions between the hydrogen atoms are responsible for the surprisingly strong aliphatic interactions. Moreover, whereas σ/σ and σ/π interactions are local, the π/π stacking are inherently delocalized, which give rise to a non-additive effect. These new types of dispersion interactions between saturated groups can be exploited in the rational design of novel carbon materials.
Assuntos
Benzeno/química , Carbono/química , Cicloexanos/química , Dimerização , Modelos Moleculares , Naftalenos/química , Teoria Quântica , Cloreto de Sódio/química , TermodinâmicaRESUMO
In the search for new nonlinear optical (NLO) switching devices, expanded porphyrins have emerged as ideal candidates thanks to their tunable chemical and photophysical properties. Introducing meso-substituents to these macrocycles is a successful strategy to enhance the NLO contrasts. Despite its potential, the influence of meso-substitution on their structural and geometrical properties has been scarcely investigated. In this work, we pursue to grasp the underlying pivotal concepts for the fine-tuning of the NLO contrasts of hexaphyrin-based molecular switches, with a particular focus on the first hyperpolarizability related to the hyper-Rayleigh scattering (ß HRS ). Building further on these concepts, we also aim to develop a rational design protocol. Starting from the (un)substituted hexaphyrins with various π-conjugation topologies and redox states, structure-property relationships are established linking aromaticity, photophysical properties and ß HRS responses. Ultimately, inverse molecular design using the best-first search algorithm is applied on the most favorable switches with the aim to further explore the combinatorial chemical compound space of meso-substituted hexaphyrins in search of high-contrast NLO switches. Two definitions of the figure-of-merit of the switch performance were used as target objectives in the optimization problem. Several meso-substitution patterns and their underlying characteristics are identified, uncovering molecular symmetry and the electronic nature of the substituents as the key players for fine-tuning the ß HRS values and NLO contrasts of hexaphyrin-based switches.
RESUMO
The performance of density functionals and wavefunction methods for describing the thermodynamics and kinetics of hydride reductions of 2-substituted cyclohexanones has been evaluated for the first time. A variety of exchange correlation functionals ranging from generalized gradient approximations to double hybrids have been tested and their performance to describe the facial selectivity of hydride reductions of cyclohexanones has been carefully assessed relative to the CCSD(T) method. Among the tested methods, an approach in which single-point energy calculations using the double hybrid B2PLYP-D3 functional on ωB97X-D optimized geometries provides the most accurate transition state energies for these kinetically-controlled reactions. Moreover, the role of torsional strain, temperature, solvation, noncovalent interactions on the stereoselectivity of these reductions was elucidated. Our results indicate a prominent role of the substituent on the cis/trans ratios driven by the delicate interplay between torsional strain and dispersion interactions.