Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurooncol ; 162(3): 481-488, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36577872

RESUMO

PET imaging using radiolabeled amino acids in addition to MRI has become a valuable diagnostic tool in the clinical management of patients with brain tumors. This review provides a comprehensive overview of PET studies in glioma patients with a mutation in the isocitrate dehydrogenase gene (IDH). A considerable fraction of these tumors typically show no contrast enhancement on MRI, especially when classified as grade 2 according to the World Health Organization classification of Central Nervous System tumors. Major diagnostic challenges in this situation are differential diagnosis, target definition for diagnostic biopsies, delineation of glioma extent for treatment planning, differentiation of treatment-related changes from tumor progression, and the evaluation of response to alkylating agents. The main focus of this review is the role of amino acid PET in this setting. Furthermore, in light of clinical trials using IDH inhibitors targeting the mutated IDH enzyme for treating patients with IDH-mutant gliomas, we also aim to give an outlook on PET probes specifically targeting the IDH mutation, which appear potentially helpful for response assessment.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Desidrogenase/genética , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/terapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Tomografia por Emissão de Pósitrons , Mutação , Aminoácidos/genética
2.
J Neurooncol ; 159(2): 309-317, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35716310

RESUMO

BACKGROUND: The phase 2 REGOMA trial suggested an encouraging overall survival benefit in glioblastoma patients at first relapse treated with the multikinase inhibitor regorafenib. Here, we evaluated the efficacy and side effects of regorafenib in a real-life setting. METHODS: From 2018 to 2021, 30 patients with progressive WHO CNS grade 3 or 4 gliomas treated with regorafenib (160 mg/day; first 3 weeks of each 4-week cycle) with individual dose adjustment depending on toxicity were retrospectively identified. Side effects were evaluated according to the Common Terminology Criteria for Adverse Events (version 5.0). MRI was obtained at baseline and after every second cycle. Tumor progression was assessed according to RANO criteria. After regorafenib initiation, the median PFS and OS were calculated. RESULTS: The median number of treatment lines before regorafenib was 2 (range 1-4). Most patients (73%) had two or more pretreatment lines. At first relapse, 27% of patients received regorafenib. A total of 94 regorafenib cycles were administered (median 2 cycles; range 1-9 cycles). Grade 3 and 4 side effects were observed in 47% and 7% of patients, respectively, and were not significantly increased in patients with two or more pretreatments (P > 0.05). The most frequent grade 3 or 4 side effects were laboratory abnormalities (62%). PFS was 2.6 months (range 0.8-8.2 months), and the OS was 6.2 months (range 0.9-24 months). CONCLUSIONS: In patients with progressive WHO grade 3 or 4 gliomas, predominantly with two pretreatment lines or more, regorafenib seems to be effective despite considerable grade 3 or 4 side effects.


Assuntos
Glioma , Compostos de Fenilureia , Humanos , Piridinas , Recidiva , Estudos Retrospectivos
3.
Neuro Oncol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970818

RESUMO

PET imaging, particularly using amino acid tracers, has become a valuable adjunct to anatomical MRI in the clinical management of patients with glioma. Collaborative international efforts have led to the development of clinical and technical guidelines for PET imaging in gliomas. The increasing readiness of statutory health insurance agencies, especially in European countries, to reimburse amino acid PET underscores its growing importance in clinical practice. Integrating artificial intelligence and radiomics in PET imaging of patients with glioma may significantly improve tumor detection, segmentation, and response assessment. Efforts are ongoing to facilitate the clinical translation of these techniques. Considerable progress in computer technology developments (eg quantum computers) may be helpful to accelerate these efforts. Next-generation PET scanners, such as long-axial field-of-view PET/CT scanners, have improved image quality and body coverage and therefore expanded the spectrum of indications for PET imaging in Neuro-Oncology (eg PET imaging of the whole spine). Encouraging results of clinical trials in patients with glioma have prompted the development of PET tracers directing therapeutically relevant targets (eg the mutant isocitrate dehydrogenase) for novel anticancer agents in gliomas to improve response assessment. In addition, the success of theranostics for the treatment of extracranial neoplasms such as neuroendocrine tumors and prostate cancer has currently prompted efforts to translate this approach to patients with glioma. These advancements highlight the evolving role of PET imaging in Neuro-Oncology, offering insights into tumor biology and treatment response, thereby informing personalized patient care. Nevertheless, these innovations warrant further validation in the near future.

4.
J Nucl Med ; 65(6): 838-844, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38664020

RESUMO

PET using the radiolabeled amino acid O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) has been shown to be of value for treatment monitoring in patients with brain metastases after multimodal therapy, especially in clinical situations with equivocal MRI findings. As medical procedures must be justified socioeconomically, we determined the effectiveness and cost-effectiveness of 18F-FET PET for treatment monitoring of multimodal therapy, including checkpoint inhibitors, targeted therapies, radiotherapy, and combinations thereof in patients with brain metastases secondary to melanoma or non-small cell lung cancer. Methods: We analyzed already-published clinical data and calculated the associated costs from the German statutory health insurance system perspective. Two clinical scenarios were considered: decision tree model 1 determined the effectiveness of 18F-FET PET alone for identifying treatment-related changes, that is, the probability of correctly identifying patients with treatment-related changes confirmed by neuropathology or clinicoradiographically using the Response Assessment in Neuro-Oncology criteria for immunotherapy. The resulting cost-effectiveness ratio showed the cost for each correctly identified patient with treatment-related changes in whom MRI findings remained inconclusive. Decision tree model 2 calculated the effectiveness of both 18F-FET PET and MRI, that is, the probability of correctly identifying nonresponders to treatment. The incremental cost-effectiveness ratio was calculated to determine cost-effectiveness, that is, the cost for each additionally identified nonresponder by 18F-FET PET who would have remained undetected by MRI. One-way deterministic and probabilistic sensitivity analyses tested the robustness of the results. Results: 18F-FET PET identified 94% of patients with treatment-related changes, resulting in €1,664.23 (€1.00 = $1.08 at time of writing) for each correctly identified patient. Nonresponders were correctly identified in 60% by MRI and in 80% by 18F-FET PET, resulting in €3,292.67 and €3,915.83 for each correctly identified nonresponder by MRI and 18F-FET PET, respectively. The cost to correctly identify 1 additional nonresponder by 18F-FET PET, who would have remained unidentified by MRI, was €5,785.30. Conclusion: Given the considerable annual cost of multimodal therapy, the integration of 18F-FET PET can potentially improve patient care while reducing costs.


Assuntos
Neoplasias Encefálicas , Análise Custo-Benefício , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Tirosina , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Tomografia por Emissão de Pósitrons/economia , Imageamento por Ressonância Magnética/economia , Tirosina/análogos & derivados , Tirosina/uso terapêutico , Terapia Combinada , Imagem Multimodal/economia , Masculino , Feminino , Análise de Custo-Efetividade
5.
Neuro Oncol ; 25(5): 984-994, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36215231

RESUMO

BACKGROUND: We evaluated O-(2-[18F]fluoroethyl)-l-tyrosine (FET) PET and MRI for early response assessment in recurrent glioma patients treated with lomustine-based chemotherapy. METHODS: Thirty-six adult patients with WHO CNS grade 3 or 4 gliomas (glioblastoma, 69%) at recurrence (median number of recurrences, 1; range, 1-3) were retrospectively identified. Besides MRI, serial FET PET scans were performed at baseline and early after chemotherapy initiation (not later than two cycles). Tumor-to-brain ratios (TBR), metabolic tumor volumes (MTV), the occurrence of new distant hotspots with a mean TBR >1.6 at follow-up, and the dynamic parameter time-to-peak were derived from all FET PET scans. PET parameter thresholds were defined using ROC analyses to predict PFS of ≥6 months and OS of ≥12 months. MRI response assessment was based on RANO criteria. The predictive values of FET PET parameters and RANO criteria were subsequently evaluated using univariate and multivariate survival estimates. RESULTS: After treatment initiation, the median follow-up time was 11 months (range, 3-71 months). Relative changes of TBR, MTV, and RANO criteria predicted a significantly longer PFS (all P ≤ .002) and OS (all P ≤ .045). At follow-up, the occurrence of new distant hotspots (n ≥ 1) predicted a worse outcome, with significantly shorter PFS (P = .005) and OS (P < .001). Time-to-peak changes did not predict a significantly longer survival. Multivariate survival analyses revealed that new distant hotspots at follow-up FET PET were most potent in predicting non-response (P < .001; HR, 8.578). CONCLUSIONS: Data suggest that FET PET provides complementary information to RANO criteria for response evaluation of lomustine-based chemotherapy early after treatment initiation.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Lomustina/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Estudos Retrospectivos , Compostos Radiofarmacêuticos/metabolismo , Glioma/diagnóstico por imagem , Glioma/tratamento farmacológico , Glioma/metabolismo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Tirosina/metabolismo
6.
Neurooncol Adv ; 5(Suppl 1): i84-i93, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37287577

RESUMO

In patients with meningioma, diagnosis and treatment planning are predominantly based on anatomical imaging using MRI or CT. Constraints of these imaging modalities include precise meningioma delineation-especially at the skull base, in the case of trans-osseus growth, and in tumors with complex geometry-and the differentiation of post-therapeutic reactive changes from meningioma relapse. Advanced metabolic imaging using PET may help to characterize specific metabolic and cellular features providing additional information beyond the information derived from anatomical imaging alone. Accordingly, the use of PET in meningioma patients is steadily increasing. This review summarizes recent advances in PET imaging helpful for improving the clinical management of patients with meningioma.

7.
Expert Rev Neurother ; 22(11-12): 915-921, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36563186

RESUMO

INTRODUCTION: Brain metastases in patients with extracranial cancer are typically associated with increased morbidity and mortality. Stereotactic radiotherapy and immunotherapy using checkpoint inhibitors currently are essential in brain metastases treatment. Since conventional contrast-enhanced MRI alone cannot reliably differentiate between treatment-induced changes and brain metastasis relapse, several studies investigated the role of PET imaging and, more recently, radiomics, based on routinely acquired PET images, to overcome this clinically relevant challenge. AREAS COVERED: The current literature on PET imaging, including radiomics, in patients with brain metastases, focusing on the diagnosis and assessment of post-treatment relapse, is summarized. EXPERT OPINION: Available data suggest that imaging parameters, including radiomics features, mainly derived from amino acid PET, are helpful for diagnosis and assessment of post-treatment relapse in patients with brain metastases.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética , Doença Crônica , Recidiva
8.
Sci Rep ; 11(1): 20828, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675225

RESUMO

In glioma patients, complete resection of the contrast-enhancing portion is associated with improved survival, which, however, cannot be achieved in a considerable number of patients. Here, we evaluated the prognostic value of O-(2-[18F]-fluoroethyl)-L-tyrosine (FET) PET in not completely resectable glioma patients with minimal or absent contrast enhancement before temozolomide chemoradiation. Dynamic FET PET scans were performed in 18 newly diagnosed patients with partially resected (n = 8) or biopsied (n = 10) IDH-wildtype astrocytic glioma before initiation of temozolomide chemoradiation. Static and dynamic FET PET parameters, as well as contrast-enhancing volumes on MRI, were calculated. Using receiver operating characteristic analyses, threshold values for which the product of paired values for sensitivity and specificity reached a maximum were obtained. Subsequently, the prognostic values of FET PET parameters and contrast-enhancing volumes on MRI were evaluated using univariate Kaplan-Meier and multivariate Cox regression (including the MTV, age, MGMT promoter methylation, and contrast-enhancing volume) survival analyses for progression-free and overall survival (PFS, OS). On MRI, eight patients had no contrast enhancement; the remaining patients had minimal contrast-enhancing volumes (range, 0.2-5.3 mL). Univariate analyses revealed that smaller pre-irradiation FET PET tumor volumes were significantly correlated with a more favorable PFS (7.9 vs. 4.2 months; threshold, 14.8 mL; P = 0.012) and OS (16.6 vs. 9.0 months; threshold, 23.8 mL; P = 0.002). In contrast, mean tumor-to-brain ratios and time-to-peak values were only associated with a longer PFS (P = 0.048 and P = 0.045, respectively). Furthermore, the pre-irradiation FET PET tumor volume remained significant in multivariate analyses (P = 0.043), indicating an independent predictor for OS. Our results suggest that pre-irradiation FET PET parameters have a prognostic impact in this subgroup of patients.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioma/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Adulto , Idoso , Feminino , Radioisótopos de Flúor/química , Humanos , Isocitrato Desidrogenase/análise , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Prognóstico , Estudos Retrospectivos , Tirosina/análogos & derivados , Adulto Jovem
9.
Case Rep Oncol ; 13(1): 35-42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32095126

RESUMO

Leptomeningeal carcinomatosis is an extremely rare, but devastating complication in pancreatic cancer patients with a poor prognosis despite multimodal treatment. We present a 51-year-old male patient with the very rare condition of leptomeningeal carcinomatosis originating from pancreatic cancer. He presented to our hospital with severe headache and neck stiffness 30 months after systemic chemotherapy. Cerebral and spinal MRI as well as cerebrospinal fluid examination confirmed the diagnosis of leptomeningeal carcinomatosis. The patient responded to gemcitabine plus nab-paclitaxel in terms of elimination of tumor cells from the CSF and concurrent clinical improvement for 3 months. The observed findings suggest that the combination of gemcitabine plus nab-paclitaxel is potentially effective in affected cerebrospinal fluid of pancreatic carcinoma patients.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa