Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 127(Pt 6): 1203-13, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24463815

RESUMO

The membrane-anchored collagenase membrane type 1 matrix metalloprotease (MT1-MMP) has been shown to play an essential role during epithelial tubulogenesis in 3D collagen matrices; however, its regulation during tubulogenesis is not understood. Here, we report that degradation of collagen in polarized epithelial cells is post-translationally regulated by changing the localization of MT1-MMP from the apical to the basal surface. MT1-MMP predominantly localizes at the apical surface in inert polarized epithelial cells, whereas treatment with HGF induced basal localization of MT1-MMP followed by collagen degradation. The basal localization of MT1-MMP requires the ectodomains of the enzyme because deletion of the MT-loop region or the hemopexin domain inhibited basal localization of the enzyme. TGFß is a well-known inhibitor of tubulogenesis and our data indicate that its mechanism of inhibition is, at least in part, due to inhibition of MT1-MMP localization to the basal surface. Interestingly, however, the effect of TGFß was found to be bi-phasic: at high doses it effectively inhibited basal localization of MT1-MMP, whereas at lower doses tubulogenesis and basal localization of MT1-MMP was promoted. Taken together, these data indicate that basal localization of MT1-MMP is a key factor promoting the degradation of extracellular matrix by polarized epithelial cells, and that this is an essential part of epithelial morphogenesis in 3D collagen.


Assuntos
Membrana Celular/enzimologia , Colágeno/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Animais , Movimento Celular , Polaridade Celular , Meios de Cultura , Cães , Fator de Crescimento de Hepatócito/fisiologia , Humanos , Células Madin Darby de Rim Canino , Camundongos , Organogênese , Transporte Proteico , Proteólise
2.
Data Brief ; 5: 468-75, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26594658

RESUMO

The endo-lysosomal cysteine cathepsin L has recently been shown to have moonlighting activities in that its unexpected nuclear localization in colorectal carcinoma cells is involved in cell cycle progression (Tamhane et al., 2015) [1]. Here, we show data on the construction and sequence of a plasmid coding for human cathepsin L tagged with an enhanced green fluorescent protein (phCL-EGFP) in which the fluorescent protein is covalently attached to the C-terminus of the protease. The plasmid was used for transfection of HCT116 colorectal carcinoma cells, while data from non-transfected and pEGFP-N1-transfected cells is also shown. Immunoblotting data of lysates from non-transfected controls and HCT116 cells transfected with pEGFP-N1 and phCL-EGFP, showed stable expression of cathepsin L-enhanced green fluorescent protein chimeras, while endogenous cathepsin L protein amounts exceed those of hCL-EGFP chimeras. An effect of phCL-EGFP expression on proliferation and metabolic states of HCT116 cells at 24 h post-transfection was observed.

3.
Eur J Cell Biol ; 83(11-12): 781-95, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15679122

RESUMO

Cathepsin B, a lysosomal cysteine proteinase, was detected within vesicles of cellular protrusions forming cell-cell contact sites between keratinocytes of the stratum spinosum of human skin. This observation suggested the possibility that secretion of the protease into the pericellular spaces could be involved in the dissociation of cell-cell contacts to enable intraepidermal keratinocyte migration. To determine whether cathepsin B is indeed secreted from migrating keratinocytes, we first used subconfluent HaCaT cells as a culture model to study spontaneous keratinocyte migration. A cathepsin B-specific fluorescent affinity label proved the association of mature cathepsin B with the surfaces of HaCaT cells at the leading edges of growing cells. Second, we used scratch-wounds of confluent HaCaT monolayers as a model of induced keratinocyte migration. Cathepsin B was detected within lysosomes, i.e. vesicles within the perinuclear region of non-wounded cells. Expression of cathepsin B was up-regulated and cathepsin B-positive vesicles showed a redistribution from perinuclear to peripheral regions of keratinocytes at the wound margins within 4 h after wounding. Enzyme cytochemistry further showed that cell surface-associated cathepsin B was proteolytically active at the leading fronts of migrating keratinocytes. In addition, increased amounts of mature forms of cathepsin B were detected within the conditioned media of HaCaT cells during the first 4 h after scratch-wounding. In contrast, and as a control, the activity of the cytosolic enzyme lactate dehydrogenase was not significantly higher in media of wounded cells as compared with non-wounded controls, arguing for a specific induction of cathepsin B secretion upon wounding and migration of the cells. This was further substantiated by applying various cathepsin B-specific inhibitors after wounding. These experiments showed that the migration ability of keratinocytes was reduced due to the blockage of functional cathepsin B. Thus, our results strongly suggest that cell surface-associated cathepsin B is a protease that contributes to the remodelling of the extracellular matrix and thereby promotes keratinocyte migration during wound healing.


Assuntos
Catepsina B/metabolismo , Movimento Celular/fisiologia , Queratinócitos/enzimologia , Lisossomos/enzimologia , Cicatrização/fisiologia , Catepsina B/análise , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Cisteína Endopeptidases/análise , Cisteína Endopeptidases/metabolismo , Matriz Extracelular/metabolismo , Humanos , Queratinócitos/química , Queratinócitos/fisiologia , Regeneração , Pele/citologia , Pele/metabolismo , Fenômenos Fisiológicos da Pele
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa