Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; : e0044223, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832786

RESUMO

Most microbial cells found in nature exist in matrix-covered, surface-attached communities known as biofilms. This mode of growth is initiated by the ability of the microbe to sense a surface on which to grow. The opportunistic pathogen Pseudomonas aeruginosa (Pa) PA14 utilizes a single polar flagellum and type 4 pili (T4P) to sense surfaces. For Pa, T4P-dependent "twitching" motility is characterized by effectively pulling the cell across a surface through a complex process of cooperative binding, pulling, and unbinding. T4P retraction is powered by hexameric ATPases. Pa cells that have engaged a surface increase production of the second messenger cyclic AMP (cAMP) over multiple generations via the Pil-Chp system. This rise in cAMP allows cells and their progeny to become better adapted for surface attachment and activates virulence pathways through the cAMP-binding transcription factor Vfr. While many studies have focused on mechanisms of T4P twitching and regulation of T4P production and function by the Pil-Chp system, the mechanism by which Pa senses and relays a surface-engagement signal to the cell is still an open question. Here we review the current state of the surface sensing literature for Pa, with a focus on T4P, and propose an integrated model of surface sensing whereby the retraction motor PilT senses and relays the signal to the Pil-Chp system via PilJ to drive cAMP production and adaptation to a surface lifestyle.

2.
Eur Phys J E Soft Matter ; 16(4): 389-400, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19177656

RESUMO

Attractions between like-charged polyelectrolytes have been observed in a variety of systems (W.M. Gelbart, R.F. Bruinsma, P.A. Pincus, V.A. Parsegian, Phys. Today 53, September issue, 38 (2000)). Recent biological examples include DNA, filamentous viruses, and F-actin. Theoretical investigations on idealized systems indicate that counterion correlations play a central role, but no experiments that specifically probe such correlations have been performed. Using synchrotron X-ray diffraction, we have directly observed the organization of multivalent ions on cytoskeletal filamentous actin (a well-defined biological polyelectrolyte) and found an unanticipated symmetry-breaking collective counterion mechanism for generating attractions. Surprisingly, the counterions do not form a lattice that simply follows actin's helical symmetry; rather, the counterions organize into "frozen" ripples parallel to the actin filaments and form structures reminiscent of charge density waves. Moreover, these 1D counterion charge density waves form a coupled mode with twist deformations of the oppositely charged actin filaments. This counterion organization is not sensitive to thermal fluctuations in temperature range accessible to protein-based polyelectrolyte systems. Moreover, the counterion density waves are "pinned" to the spatial periodicity of charges on the actin filament even if the global filament charge density is varied, indicating the importance of charge periodicity on the polyelectrolyte substrate.


Assuntos
Actinas/química , Eletrólitos/química , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Sítios de Ligação , Cálcio/metabolismo , Cálcio/farmacologia , Reagentes de Ligações Cruzadas/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Eletrólitos/metabolismo , Concentração de Íons de Hidrogênio , Magnésio/metabolismo , Magnésio/farmacologia , Proteínas dos Microfilamentos/metabolismo , Coelhos , Espalhamento a Baixo Ângulo , Síncrotrons , Termodinâmica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa