Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Med Sci ; 20(13): 1711-1721, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928881

RESUMO

Background: Menopause is accompanied by increased oxidative stress, partly contributing to weight gain and bone marrow adiposity. Traditional Chinese medication, E'Jiao, has been demonstrated to reduce excessive bone remodelling during oestrogen deprivation, but its effects on body composition and bone marrow adiposity during menopause remain elusive. Objective: To determine the effects of E'Jiao on body composition, bone marrow adiposity and skeletal redox status in ovariectomised (OVX) rats. Methods: Seven groups of three-month-old female Sprague Dawley rats were established (n=6/group): baseline, sham, OVX control, OVX-treated with low, medium or high-dose E'Jiao (0.26, 0.53, 1.06 g/kg, p.o.) or calcium carbonate (1% in tap water, ad libitum). The supplementation was terminated after 8 weeks. Whole-body composition analysis was performed monthly using dual-energy X-ray absorptiometry. Analysis of bone-marrow adipocyte numbers and skeletal antioxidant activities were performed on the femur. Results: Increased total mass, lean mass, and bone marrow adipocyte number were observed in the OVX control versus the sham group. Low-dose E'Jiao supplementation counteracted these changes. Besides, E'Jiao at all doses increased skeletal catalase and superoxide dismutase activities but lowered glutathione levels in the OVX rats. Skeletal malondialdehyde level was not affected by ovariectomy but was lowered with E'Jiao supplementation. However, peroxisome proliferator-activated receptor gamma protein expression was not affected by ovariectomy or any treatment. Conclusion: E'Jiao, especially at the low dose, prevented body composition changes and bone marrow adiposity due to ovariectomy. These changes could be mediated by the antioxidant actions of E'Jiao. It has the potential to be used among postmenopausal women to avoid adiposity.


Assuntos
Adiposidade , Medula Óssea , Humanos , Ratos , Feminino , Animais , Lactente , Ratos Sprague-Dawley , Antioxidantes/farmacologia , Obesidade , Oxirredução , Ovariectomia/efeitos adversos , Densidade Óssea
2.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37569816

RESUMO

A positive association between insulin resistance and osteoporosis has been widely established. However, crosstalk between the signalling molecules in insulin and Wingless (Wnt)/beta-(ß-)catenin transduction cascades orchestrating bone homeostasis remains not well understood. The current review aims to collate the existing evidence, reporting (a) the expression of insulin signalling molecules involved in bone-related disorders and (b) the expression of Wnt/ß-catenin signalling molecules involved in governing insulin homeostasis. The downstream effector molecule, glycogen synthase kinase-3 beta (GSK3ß), has been identified to be a point of convergence linking the two signal transduction networks. This review highlights that GSK3ß may be a drug target in the development of novel anabolic agents and the potential use of GSK3ß inhibitors to treat bone-related disorders.


Assuntos
Insulina , beta Catenina , Insulina/fisiologia , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/metabolismo , Densidade Óssea , Via de Sinalização Wnt , Insulina Regular Humana
3.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298120

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has emerged as a global health problem that affects people even at young ages due to unhealthy lifestyles. Without intervention, NAFLD will develop into nonalcoholic steatohepatitis (NASH) and eventually liver cirrhosis and hepatocellular carcinoma. Although lifestyle interventions are therapeutic, effective implementation remains challenging. In the efforts to establish effective treatment for NAFLD/NASH, microRNA (miRNA)-based therapies began to evolve in the last decade. Therefore, this systematic review aims to summarize current knowledge on the promising miRNA-based approaches in NAFLD/NASH therapies. A current systematic evaluation and a meta-analysis were conducted according to the PRISMA statement. In addition, a comprehensive exploration of PubMed, Cochrane, and Scopus databases was conducted to perform article searches. A total of 56 different miRNAs were reported as potential therapeutic agents in these studies. miRNA-34a antagonist/inhibitor was found to be the most studied variant (n = 7), and it significantly improved the hepatic total cholesterol, total triglyceride, Aspartate Aminotransferase (AST), and Alanine Transaminase (ALT) levels based on a meta-analysis. The biological processes mediated by these miRNAs involved hepatic fat accumulation, inflammation, and fibrosis. miRNAs have shown enormous therapeutic potential in the management of NAFLD/NASH, wherein miRNA-34a antagonist has been found to be an exceptional potential agent for the treatment of NAFLD/NASH.


Assuntos
Neoplasias Hepáticas , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , MicroRNAs/uso terapêutico , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/terapia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia
4.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108321

RESUMO

Bone grafting is commonly used as a treatment to repair bone defects. However, its use is challenged by the presence of medical conditions that weaken the bone, like osteoporosis. Calcium phosphate cement (CPC) is used to restore bone defects, and it is commonly available as a bioabsorbable cement paste. However, its use in clinical settings is limited by inadequate mechanical strength, inferior anti-washout characteristics, and poor osteogenic activity. There have been attempts to overcome these shortcomings by adding various natural or synthetic materials as enhancers to CPC. This review summarises the current evidence on the physical, mechanical, and biological properties of CPC after doping with synthetic materials. The incorporation of CPC with polymers, biomimetic materials, chemical elements/compounds, and combination with two or more synthetic materials showed improvement in biocompatibility, bioactivity, anti-washout properties, and mechanical strength. However, the mechanical property of CPC doped with trimethyl chitosan or strontium was decreased. In conclusion, doping of synthetic materials enhances the osteogenic features of pure CPC. The positive findings from in vitro and in vivo studies await further validation on the efficacy of these reinforced CPC composites in clinical settings.


Assuntos
Osso e Ossos , Osteogênese , Teste de Materiais , Polímeros , Fosfatos de Cálcio/farmacologia , Fosfatos de Cálcio/química , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química
5.
Int J Med Sci ; 19(11): 1648-1659, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36237992

RESUMO

Postmenopausal osteoporosis transpires due to excessive osteoclastic bone resorption and insufficient osteoblastic bone formation in the presence of oestrogen insufficiency. Kang Shuai Lao Pian (KSLP) is a red ginseng-based traditional Chinese medicine known for its anti-ageing properties. However, studies on its effect on bone loss are lacking. Thus, the current study examined the skeletal protective effects of KSLP in an ovariectomised rodent bone loss model. Three-month-old female Sprague Dawley rats (n=42) were randomised into baseline, sham and ovariectomised (OVX) groups. The OVX rats were supplemented with low- (KSLP-L; 0.15 g/kg), medium- (KSLP-M; 0.30 g/kg), high-dose KSLP (KSLP-H; 0.45 g/kg) or calcium carbonate (1% w/v). The daily supplementation of KSLP was performed via oral gavage for eight weeks. Gavage stress was stimulated in the ovariectomised control with distilled water. The rats were euthanised at the end of the study. Whole-body and femoral bone mineral content and density scans were performed at baseline and every four weeks. Blood samples were obtained for the determination of bone remodelling markers. Histomorphometry and biomechanical strength testing were performed on femurs and tibias. High bone remodelling typically due to oestrogen deficiency, indicated by the elevated bone formation and resorption markers, osteoclast surface, single-labelled surface and mineralising surface/bone surface ratio, was observed in the untreated OVX rats. Whole-body BMD adjusted to body weight and Young's modulus decreased significantly in the untreated OVX rats. High-dose KSLP supplementation counteracted these degenerative changes. In conclusion, KSLP improves bone health by normalising bone remodelling, thereby preventing bone loss and decreased bone strength caused by oestrogen deficiency. Its anti-osteoporosis effects should be validated in patients with postmenopausal osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose Pós-Menopausa , Animais , Densidade Óssea , Carbonato de Cálcio/farmacologia , China , Estrogênios , Feminino , Humanos , Laos , Osteoporose Pós-Menopausa/etiologia , Ovariectomia/efeitos adversos , Ratos , Ratos Sprague-Dawley , Água/farmacologia
6.
Int J Med Sci ; 18(12): 2673-2688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104100

RESUMO

Chloroquine (CQ) and hydroxychloroquine (HCQ) are traditional anti-malarial drugs that have been repurposed for new therapeutic uses in many diseases due to their simple usage and cost-effectiveness. The pleiotropic effects of CQ and HCQ in regulating blood pressure, glucose homeostasis, lipid, and carbohydrate metabolism have been previously described in vivo and in humans, thus suggesting their role in metabolic syndrome (MetS) prevention. The anti-hyperglycaemic, anti-hyperlipidaemic, cardioprotective, anti-hypertensive, and anti-obesity effects of CQ and HCQ might be elicited through reduction of inflammatory response and oxidative stress, improvement of endothelial function, activation of insulin signalling pathway, inhibition of lipogenesis and autophagy, as well as regulation of adipokines and apoptosis. In conclusion, the current state of knowledge supported the repurposing of CQ and HCQ usage in the management of MetS.


Assuntos
Cloroquina/uso terapêutico , Reposicionamento de Medicamentos , Síndrome Metabólica/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cloroquina/farmacologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Lipogênese/efeitos dos fármacos , Síndrome Metabólica/etiologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
7.
Molecules ; 26(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801011

RESUMO

Vitamin A is a fat-soluble micronutrient essential for growth, immunity, and good vision. The preformed retinol is commonly found in food of animal origin whereas provitamin A is derived from food of plant origin. This review summarises the current evidence from animal, human and cell-culture studies on the effects of vitamin A towards bone health. Animal studies showed that the negative effects of retinol on the skeleton were observed at higher concentrations, especially on the cortical bone. In humans, the direct relationship between vitamin A and poor bone health was more pronounced in individuals with obesity or vitamin D deficiency. Mechanistically, vitamin A differentially influenced the stages of osteogenesis by enhancing early osteoblastic differentiation and inhibiting bone mineralisation via retinoic acid receptor (RAR) signalling and modulation of osteocyte/osteoblast-related bone peptides. However, adequate vitamin A intake through food or supplements was shown to maintain healthy bones. Meanwhile, provitamin A (carotene and ß-cryptoxanthin) may also protect bone. In vitro evidence showed that carotene and ß-cryptoxanthin may serve as precursors for retinoids, specifically all-trans-retinoic acid, which serve as ligand for RARs to promote osteogenesis and suppressed nuclear factor-kappa B activation to inhibit the differentiation and maturation of osteoclasts. In conclusion, we suggest that both vitamin A and provitamin A may be potential bone-protecting agents, and more studies are warranted to support this hypothesis.


Assuntos
Osso e Ossos/metabolismo , Obesidade/metabolismo , Osteogênese , Receptores do Ácido Retinoico , Vitamina A/metabolismo , Deficiência de Vitamina D/metabolismo , Animais , Humanos
8.
Int J Med Sci ; 17(11): 1625-1638, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32669965

RESUMO

Oxidative stress and inflammation are two interlinked events that exist simultaneously in metabolic syndrome (MetS) and its related complications. These pathophysiological processes can be easily triggered by each other. This review summarizes the current evidence from animal and human studies on the effects of vitamin C in managing MetS. In vivo studies showed promising effects of vitamin C, but most of the interventions used were in combination with other compounds. The direct effects of vitamin C remain to be elucidated. In humans, the current state of evidence revealed that lower vitamin C intake and circulating concentration were found in MetS subjects. A negative relationship was observed between vitamin C intake / concentration and the risk of MetS. Oral supplementation of vitamin C also improved MetS conditions. It has been postulated that the positive outcomes of vitamin C may be in part mediated through its anti-oxidative and anti-inflammatory properties. These observations suggest the importance of MetS patients to have an adequate intake of vitamin C through food, beverages or supplements in order to maintain its concentration in the systemic circulation and potentially reverse MetS.


Assuntos
Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Animais , Humanos , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos
9.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899435

RESUMO

Quercetin is a flavonoid abundantly found in fruits and vegetables. It possesses a wide spectrum of biological activities, thus suggesting a role in disease prevention and health promotion. The present review aimed to uncover the bone-sparing effects of quercetin and its mechanism of action. Animal studies have found that the action of quercetin on bone is largely protective, with a small number of studies reporting negative outcomes. Quercetin was shown to inhibit RANKL-mediated osteoclastogenesis, osteoblast apoptosis, oxidative stress and inflammatory response while promoting osteogenesis, angiogenesis, antioxidant expression, adipocyte apoptosis and osteoclast apoptosis. The possible underlying mechanisms involved are regulation of Wnt, NF-κB, Nrf2, SMAD-dependent, and intrinsic and extrinsic apoptotic pathways. On the other hand, quercetin was shown to exert complex and competing actions on the MAPK signalling pathway to orchestrate bone metabolism, resulting in both stimulatory and inhibitory effects on bone in parallel. The overall interaction is believed to result in a positive effect on bone. Considering the important contributions of quercetin in regulating bone homeostasis, it may be considered an economical and promising agent for improving bone health. The documented preclinical findings await further validation from human clinical trials.


Assuntos
Antioxidantes/farmacologia , Reabsorção Óssea/prevenção & controle , Osso e Ossos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Quercetina/farmacologia , Animais , Humanos
10.
Aging Male ; 22(2): 89-101, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29508640

RESUMO

Selective estrogen receptor modulators (SERMs) represent a class of drugs that act as agonist or antagonist for estrogen receptor in a tissue-specific manner. The SERMs drugs are initially used for the prevention and treatment of osteoporosis in postmenopausal women. Bone health in prostate cancer patients has become a significant concern, whereby patients undergo androgen deprivation therapy is often associated with deleterious effects on bone. Previous preclinical and epidemiological findings showed that estrogens play a dominant role in improving bone health as compared to testosterone in men. Therefore, this evidence-based review aims to assess the available evidence derived from animal and human studies on the effects of SERMs on the male skeletal system. The effects of SERMs on bone mineral density (BMD)/content (BMC), bone histomorphometry, bone turnover, bone strength and fracture risk have been summarized in this review.


Assuntos
Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osteoporose/prevenção & controle , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Osso e Ossos/patologia , Modelos Animais de Doenças , Humanos , Masculino , Osteoporose/etiologia , Osteoporose/fisiopatologia , Neoplasias da Próstata/complicações , Ensaios Clínicos Controlados Aleatórios como Assunto , Moduladores Seletivos de Receptor Estrogênico/administração & dosagem , Moduladores Seletivos de Receptor Estrogênico/efeitos adversos
11.
Aging Male ; 22(2): 129-140, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29925283

RESUMO

Testosterone is the predominant gonadal androgen in men. Low testosterone levels are found to be associated with an increased in metabolic risk and systematic inflammation. Since adipose tissue is a source of inflammatory cytokines, testosterone may regulate inflammation by acting on adipose tissue. This review aimed to explore the role of testosterone in inflammation and its mechanism of action. Both animal studies and human studies showed that (1) testosterone deficiency was associated with an increase in pro-inflammatory cytokines; (2) testosterone substitution reduced pro-inflammatory cytokines. The suppression of inflammation by testosterone were observed in patients with coronary artery disease, prostate cancer and diabetes mellitus through the increase in anti-inflammatory cytokines (IL-10) and the decrease in pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α). Despite these, some studies also reported a non-significant relationship. In conclusion, testosterone may possess anti-inflammatory properties but its magnitude is debatable. More evidence is needed to validate the use of testosterone as a marker and in the management of chronic inflammatory diseases.


Assuntos
Inflamação/sangue , Testosterona/sangue , Tecido Adiposo/metabolismo , Idoso , Animais , Biomarcadores/sangue , Humanos , Inflamação/fisiopatologia , Interleucina-10/sangue , Interleucina-1beta/sangue , Interleucina-6/sangue , Masculino , Síndrome Metabólica/sangue , Testosterona/farmacologia , Fator de Necrose Tumoral alfa/sangue
12.
Int J Mol Sci ; 20(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909398

RESUMO

Bone remodelling is a tightly-coordinated and lifelong process of replacing old damaged bone with newly-synthesized healthy bone. In the bone remodelling cycle, bone resorption is coupled with bone formation to maintain the bone volume and microarchitecture. This process is a result of communication between bone cells (osteoclasts, osteoblasts, and osteocytes) with paracrine and endocrine regulators, such as cytokines, reactive oxygen species, growth factors, and hormones. The essential signalling pathways responsible for osteoclastic bone resorption and osteoblastic bone formation include the receptor activator of nuclear factor kappa-B (RANK)/receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG), Wnt/ß-catenin, and oxidative stress signalling. The imbalance between bone formation and degradation, in favour of resorption, leads to the occurrence of osteoporosis. Intriguingly, vitamin E has been extensively reported for its anti-osteoporotic properties using various male and female animal models. Thus, understanding the underlying cellular and molecular mechanisms contributing to the skeletal action of vitamin E is vital to promote its use as a potential bone-protecting agent. This review aims to summarize the current evidence elucidating the molecular actions of vitamin E in regulating the bone remodelling cycle.


Assuntos
Osso e Ossos/efeitos dos fármacos , Substâncias Protetoras/química , Substâncias Protetoras/farmacologia , Vitamina E/química , Vitamina E/farmacologia , Animais , Biomarcadores , Osso e Ossos/metabolismo , Humanos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
13.
Int J Mol Sci ; 20(10)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137764

RESUMO

Patients with advanced prostate cancer often develop bone metastases, leading to bone pain, skeletal fracture, and increased mortality. Bone provides a hospitable microenvironment to tumor cells. The disease manifestation is driven by the interaction between invading tumor cells, bone-forming osteoblasts, and bone-resorbing osteoclasts. The increased level of osteoclast-activating factor (parathyroid hormone-related peptide, PTHrP) is believed to induce bone resorption by upregulating receptor activator of nuclear factor-kappa B ligand (RANKL) and the release of various growth factors into the bone microenvironment to enhance cancer cell growth. However, the underlying molecular mechanisms remain poorly understood. This review outlines the possible molecular mechanisms involved in governing bone metastases driven by prostate cancer, which further provide the basis in searching for new molecular targets for the development of potential therapy.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Neoplasias Ósseas/secundário , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Osteoprotegerina/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Neoplasias da Próstata/patologia , Ligante RANK/metabolismo , Transdução de Sinais
14.
Biomolecules ; 14(4)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38672518

RESUMO

Glycogen synthase kinase 3-beta (GSK3ß) is a highly conserved protein kinase originally involved in glucose metabolism, insulin activity, and energy homeostasis. Recent scientific evidence demonstrated the significant role of GSK3ß in regulating bone remodelling through involvement in multiple signalling networks. Specifically, the inhibition of GSK3ß enhances the conversion of osteoclast progenitors into mature osteoclasts. GSK3ß is recognised as a pivotal regulator for the receptor activator of nuclear factor-kappa B (RANK)/receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG), phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), nuclear factor-kappa B (NF-κB), nuclear factor-erythroid 2-related factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1), canonical Wnt/beta (ß)-catenin, and protein kinase C (PKC) signalling pathways during osteoclastogenesis. Conversely, the inhibition of GSK3ß has been shown to prevent bone loss in animal models with complex physiology, suggesting that the role of GSK3ß may be more significant in bone formation than bone resorption. Divergent findings have been reported regarding the efficacy of GSK3ß inhibitors as bone-protecting agents. Some studies demonstrated that GSK3ß inhibitors reduced osteoclast formation, while one study indicated an increase in osteoclast formation in RANKL-stimulated bone marrow macrophages (BMMs). Given the discrepancies observed in the accumulated evidence, further research is warranted, particularly regarding the use of GSK3ß silencing or overexpression models. Such efforts will provide valuable insights into the direct impact of GSK3ß on osteoclastogenesis and bone resorption.


Assuntos
Glicogênio Sintase Quinase 3 beta , Osteoclastos , Osteogênese , Humanos , Animais , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/citologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Osteogênese/efeitos dos fármacos , Reabsorção Óssea/metabolismo , Reabsorção Óssea/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ligante RANK/metabolismo , Ligante RANK/farmacologia
15.
Heliyon ; 10(13): e34064, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39055794

RESUMO

Background and objective: Osteoarthritis (OA) is the most common age-related disease of joints with increasing global prevalence. Persistent inflammation within the joint space is speculated to be the cause of OA. Resveratrol is an anti-inflammatory and antioxidant compound which can influence cartilage metabolism through multiple signalling pathways. This systematic review and meta-analysis aimed to summarize the therapeutic effects of resveratrol in animal models of OA. Methods: A comprehensive literature search was performed using PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, China Wanfang and VIP databases in May 2023. Studies on the effects of resveratrol in animal models of OA written in English or Mandarin, published from the inception of databases until the date of the search were considered. Results: Fifteen eligibility studies were included and analysed. Resveratrol was shown to inhibit the secretion of interleukin-1ß, tumour necrosis factor-α, interleukin-6, nitric oxide, and apoptosis of articular chondrocytes. Joint structure as indicated by Mankin scores was restored with resveratrol in animal OA models. Conclusion: Resveratrol is a potential therapeutic agent for OA based on animal studies. Further evidence from well-planned human studies would be required to validate its clinical efficacies.

16.
Biomed Pharmacother ; 170: 115998, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091638

RESUMO

Postmenopausal women are susceptible to osteoporosis and osteoarthritis. Tocotrienol, a bone-protective nutraceutical, is reported to prevent osteoarthritis in male rats. However, its efficacy on joint health in oestrogen deficiency has not been validated. Besides, data on the use of emulsification systems in enhancing bioavailability and protective effects of tocotrienol are limited. Ovariectomised adult female Sprague-Dawley rats (3 months old) were treated with refined olive oil, emulsified (EPT, 100 mg/kg/day with 25% vitamin E content), non-emulsified palm tocotrienol (NEPT, 100 mg/kg/day with 50% vitamin E content) and calcium carbonate (1% w/v in drinking water) plus glucosamine sulphate (250 mg/kg/day) for 10 weeks. Osteoarthritis was induced with monosodium iodoacetate four weeks after ovariectomy. Baseline control was sacrificed upon receipt, while the sham group was not ovariectomised and treated with refined olive oil. EPT and NEPT prevented femoral metaphyseal and subchondral bone volume decline caused by ovariectomy. EPT decreased subchondral trabecular separation compared to the negative control. EPT preserved stiffness and Young's Modulus at the femoral mid-shaft of the rats. Circulating RANKL was reduced post-treatment in the EPT group. Joint width was reduced in all the treatment groups vs the negative control. The EPT group's grip strength was significantly improved over the negative control and NEPT group. EPT also preserved cartilage histology based on several Mankin's subscores. EPT performed as effectively as NEPT in preventing osteoporosis and osteoarthritis in ovariectomised rats despite containing less vitamin E content. This study justifies clinical trials for the use of EPT in postmenopausal women with both conditions.


Assuntos
Osteoartrite , Osteoporose , Tocotrienóis , Humanos , Ratos , Feminino , Masculino , Animais , Lactente , Tocotrienóis/farmacologia , Tocotrienóis/uso terapêutico , Ratos Sprague-Dawley , Ácido Iodoacético/efeitos adversos , Azeite de Oliva , Osteoporose/patologia , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Osteoartrite/prevenção & controle , Vitamina E/uso terapêutico , Ovariectomia
17.
J Funct Biomater ; 14(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37233395

RESUMO

The management of bone defects is complicated by the presence of clinical conditions, such as critical-sized defects created by high-energy trauma, tumour resection, infection, and skeletal abnormalities, whereby the bone regeneration capacity is compromised. A bone scaffold is a three-dimensional structure matrix serving as a template to be implanted into the defects to promote vascularisation, growth factor recruitment, osteogenesis, osteoconduction, and mechanical support. This review aims to summarise the types and applications of natural and synthetic scaffolds currently adopted in bone tissue engineering. The merits and caveats of natural and synthetic scaffolds will be discussed. A naturally derived bone scaffold offers a microenvironment closer to in vivo conditions after decellularisation and demineralisation, exhibiting excellent bioactivity, biocompatibility, and osteogenic properties. Meanwhile, an artificially produced bone scaffold allows for scalability and consistency with minimal risk of disease transmission. The combination of different materials to form scaffolds, along with bone cell seeding, biochemical cue incorporation, and bioactive molecule functionalisation, can provide additional or improved scaffold properties, allowing for a faster bone repair rate in bone injuries. This is the direction for future research in the field of bone growth and repair.

18.
Life (Basel) ; 13(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37763286

RESUMO

Gut dysbiosis has been associated with many chronic diseases, such as obesity, inflammatory bowel disease, and cancer. Gut dysbiosis triggers these diseases through the activation of the immune system by the endotoxins produced by gut microbiota, which leads to systemic inflammation. In addition to pre-/pro-/postbiotics, many natural products can restore healthy gut microbiota composition. Tocotrienol, which is a subfamily of vitamin E, has been demonstrated to have such effects. This scoping review presents an overview of the effects of tocotrienol on gut microbiota according to the existing scientific literature. A literature search to identify relevant studies was conducted using PubMed, Scopus, and Web of Science. Only original research articles which aligned with the review's objective were examined. Six relevant studies investigating the effects of tocotrienol on gut microbiota were included. All of the studies used animal models to demonstrate that tocotrienol altered the gut microbiota composition, but none demonstrated the mechanism by which this occurred. The studies induced diseases known to be associated with gut dysbiosis in rats. Tocotrienol partially restored the gut microbiota compositions of the diseased rats so that they resembled those of the healthy rats. Tocotrienol also demonstrated strong anti-inflammatory effects in these animals. In conclusion, tocotrienol could exert anti-inflammatory effects by suppressing inflammation directly or partially by altering the gut microbiota composition, thus achieving its therapeutic effects.

19.
Nutrients ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36364791

RESUMO

Phosphorus, present as phosphate in biological systems, is an essential mineral for various biological activities and biochemical processes. Numerous studies have indicated that disturbed phosphate balance may contribute to the development of metabolic syndrome (MetS). However, no consistent result was found on the association between phosphorus intake and serum phosphate concentration with MetS. It is believed that both positive and negative impacts of phosphorus/phosphate co-exist in parallel during MetS condition. Reduced phosphate level contributed to the development of obesity and hyperglycaemia. Low phosphate is believed to compromise energy production, reduce exercise capacity, increase food ingestion, and impair glucose metabolism. On the other hand, the effects of phosphorus/phosphate on hypertension are rather complex depending on the source of phosphorus and subjects' health conditions. Phosphorus excess activates sympathetic nervous system, renin-angiotensin-aldosterone system, and induces hormonal changes under pathological conditions, contributing to the blood pressure-rising effects. For lipid metabolism, adequate phosphate content ensures a balanced lipid profile through regulation of fatty acid biosynthesis, oxidation, and bile acid excretion. In conclusion, phosphate metabolism serves as a potential key feature for the development and progression of MetS. Dietary phosphorus and serum phosphate level should be under close monitoring for the management of MetS.


Assuntos
Fenômenos Bioquímicos , Síndrome Metabólica , Humanos , Obesidade/metabolismo , Fósforo , Fosfatos/metabolismo
20.
Biomedicines ; 10(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36551995

RESUMO

Metabolic syndrome (MetS) refers to a cluster of metabolic dysregulations, which include insulin resistance, obesity, atherogenic dyslipidemia and hypertension. The complex pathogenesis of MetS encompasses the interplay between environmental and genetic factors. Environmental factors such as excessive nutrients and sedentary lifestyle are modifiable and could be improved by lifestyle modification. However, genetic susceptibility to MetS, a non-modifiable factor, has attracted the attention of researchers, which could act as the basis for future diagnosis, prognosis, and therapy for MetS. Several cholesterol-related genes associated with each characteristic of MetS have been identified, such as apolipoprotein, lipoprotein lipase (LPL), cholesteryl ester transfer protein (CETP) and adiponectin. This review aims to summarize the genetic information of cholesterol-related genes in MetS, which may potentially serve as biomarkers for early prevention and management of MetS.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa