Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36236548

RESUMO

Soil moisture has been considered a key variable in governing the terrestrial ecosystem. However, it is challenging to preserve indigenous soil characteristics using conventional soil moisture monitoring methods that require maximum soil contacts. To overcome this issue, we developed a non-destructive method of evaluating soil moisture using a contactless ultrasonic system. This system was designed to measure leaky Rayleigh waves at the air-soil joint-half space. The influences of soil moisture on leaky Rayleigh waves were explored under sand, silt, and clay in a controlled experimental design. Our results showed that there were strong relationships between the energy and amplitude of leaky Rayleigh waves and soil moisture for all three soil cases. These results can be explained by reduced soil strengths during evaporation processes for coarse soil particles as opposed to fine soil particles. To evaluate soil moisture based on the dynamic parameters and wave properties obtained from the observed leaky Rayleigh waves, we used the random forest model. The accuracy of predicted soil moisture was exceptional for test data sets under all soil types (R2 ≥ 0.98, RMSE ≤ 0.0089 m3 m-3). That is, our study demonstrated that the leaky Rayleigh waves had great potential to continuously assess soil moisture variations without soil disturbances.


Assuntos
Ecossistema , Solo , Argila , Areia , Ultrassom
2.
Sci Total Environ ; 951: 175400, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39142398

RESUMO

The dynamics of agricultural soil organic carbon storage have been considerably influenced by the evolution of crop species, offering promising opportunities for restoring soil organic carbon under elevated temperatures through yield improvements. However, the intricate interplay between climate change and surface erosion processes poses challenges in understanding agricultural soil carbon dynamics in hilly landscapes. This study aimed to address these challenges by assessing the effects of climate change on soil organic carbon dynamics under the Shared Socioeconomic Pathways 245 and 585. We utilized projections from 12 distinct global climate models, covering the period from 2015 to 2100. Additionally, we investigated the potential for improving soybean yields by 100 %, 200 %, and 300 % linearly by 2100 to offset the anticipated soil organic carbon losses. Using a coupled landscape and biogeochemical model, our analysis focused on a soybean field in Nenjiang County, China. Our findings revealed a distinct soil organic carbon profile in deposition areas, characterized by relatively low levels of soil organic carbon in surface layers, attributed to carbon influx from adjacent erosion areas with typically low carbon content. We modeled decreases in soil CO2 fluxes with escalating climate change, corresponding to expected decreases in soil organic carbon levels, despite concurrent rises in soil microbial activity linked to increasing temperatures. Erosion areas emerged as particularly vulnerable zones under elevated temperatures due to their higher proportion of soil CO2 fluxes relative to soil organic carbon levels compared to deposition areas. As a soil organic carbon restoration strategy, improvements in soybean yields showed promise in mitigating soil organic carbon losses through enhanced litter inputs and the cooling effects induced by shading the soil. This study underscored the potential for achieving the dual benefits of food security and soil organic carbon restoration in the coming decades through a unified approach to enhancing soybean yields.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa