Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 134(1): 175-87, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18614020

RESUMO

The brain produces two brain-derived neurotrophic factor (BDNF) transcripts, with either short or long 3' untranslated regions (3' UTRs). The physiological significance of the two forms of mRNAs encoding the same protein is unknown. Here, we show that the short and long 3' UTR BDNF mRNAs are involved in different cellular functions. The short 3' UTR mRNAs are restricted to somata, whereas the long 3' UTR mRNAs are also localized in dendrites. In a mouse mutant where the long 3' UTR is truncated, dendritic targeting of BDNF mRNAs is impaired. There is little BDNF in hippocampal dendrites despite normal levels of total BDNF protein. This mutant exhibits deficits in pruning and enlargement of dendritic spines, as well as selective impairment in long-term potentiation in dendrites, but not somata, of hippocampal neurons. These results provide insights into local and dendritic actions of BDNF and reveal a mechanism for differential regulation of subcellular functions of proteins.


Assuntos
Regiões 3' não Traduzidas/análise , Regiões 3' não Traduzidas/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Animais , Dendritos/química , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/química , Neurônios/citologia , Poliadenilação , Biossíntese de Proteínas , Receptor trkB/análise
2.
J Neurosci ; 35(1): 396-408, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25568131

RESUMO

Fragile X syndrome (FXS) is the leading cause of both intellectual disability and autism resulting from a single gene mutation. Previously, we characterized cognitive impairments and brain structural defects in a Drosophila model of FXS and demonstrated that these impairments were rescued by treatment with metabotropic glutamate receptor (mGluR) antagonists or lithium. A well-documented biochemical defect observed in fly and mouse FXS models and FXS patients is low cAMP levels. cAMP levels can be regulated by mGluR signaling. Herein, we demonstrate PDE-4 inhibition as a therapeutic strategy to ameliorate memory impairments and brain structural defects in the Drosophila model of fragile X. Furthermore, we examine the effects of PDE-4 inhibition by pharmacologic treatment in the fragile X mouse model. We demonstrate that acute inhibition of PDE-4 by pharmacologic treatment in hippocampal slices rescues the enhanced mGluR-dependent LTD phenotype observed in FXS mice. Additionally, we find that chronic treatment of FXS model mice, in adulthood, also restores the level of mGluR-dependent LTD to that observed in wild-type animals. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of FXS is an important advance, in that this identifies and validates PDE-4 inhibition as potential therapeutic intervention for the treatment of individuals afflicted with FXS.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil/enzimologia , Plasticidade Neuronal/fisiologia , Inibidores da Fosfodiesterase 4/farmacologia , Animais , Animais Geneticamente Modificados , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Drosophila , Feminino , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Masculino , Camundongos , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/uso terapêutico
3.
Proc Natl Acad Sci U S A ; 110(37): 15103-8, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23980178

RESUMO

Activity-dependent gene transcription, including that of the brain-derived neurotrophic factor (Bdnf) gene, has been implicated in various cognitive functions. We previously demonstrated that mutant mice with selective disruption of activity-dependent BDNF expression (BDNF-KIV mice) exhibit deficits in GABA-mediated inhibition in the prefrontal cortex (PFC). Here, we show that disruption of activity-dependent BDNF expression impairs BDNF-dependent late-phase long-term potentiation (L-LTP) in CA1, a site of hippocampal output to the PFC. Interestingly, early-phase LTP and conventional L-LTP induced by strong tetanic stimulation were completely normal in BDNF-KIV mice. In parallel, attenuation of activity-dependent BDNF expression significantly impairs spatial memory reversal and contextual memory extinction, two executive functions that require intact hippocampal-PFC circuitry. In contrast, spatial and contextual memory per se were not affected. Thus, activity-dependent BDNF expression in the hippocampus and PFC may contribute to cognitive and behavioral flexibility. These results suggest distinct roles for different forms of L-LTP and provide a link between activity-dependent BDNF expression and behavioral perseverance, a hallmark of several psychiatric disorders.


Assuntos
Comportamento Animal/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Região CA1 Hipocampal/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/deficiência , Cognição/fisiologia , Condicionamento Psicológico/fisiologia , Expressão Gênica , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Knockout , Camundongos Mutantes
4.
Proc Natl Acad Sci U S A ; 106(14): 5942-7, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19293383

RESUMO

Transcription of Bdnf is controlled by multiple promoters, which drive expression of multiple transcripts encoding for the same protein. Promoter IV contributes significantly to activity-dependent brain-derived neurotrophic factor (BDNF) transcription. We have generated promoter IV mutant mice (BDNF-KIV) by inserting a GFP-STOP cassette within the Bdnf exon IV locus. This genetic manipulation results in disruption of promoter IV-mediated Bdnf expression. BDNF-KIV animals exhibited significant deficits in GABAergic interneurons in the prefrontal cortex (PFC), particularly those expressing parvalbumin, a subtype implicated in executive function and schizophrenia. Moreover, disruption of promoter IV-driven Bdnf transcription impaired inhibitory but not excitatory synaptic transmission recorded from layer V pyramidal neurons in the PFC. The attenuation of GABAergic inputs resulted in an aberrant appearance of spike-timing-dependent synaptic potentiation (STDP) in PFC slices derived from BDNF-KIV, but not wild-type littermates. These results demonstrate the importance of promoter IV-dependent Bdnf transcription in GABAergic function and reveal an unexpected regulation of STDP in the PFC by BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Córtex Pré-Frontal/fisiologia , Regiões Promotoras Genéticas/fisiologia , Transmissão Sináptica , Transcrição Gênica , Animais , Potenciais Pós-Sinápticos Excitadores , Potenciais Pós-Sinápticos Inibidores , Camundongos , Camundongos Mutantes , Potenciais Sinápticos
5.
Nat Neurosci ; 8(8): 1069-77, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16025106

RESUMO

Pro- and mature brain-derived neurotrophic factor (BDNF) activate two distinct receptors: p75 neurotrophin receptor (p75(NTR)) and TrkB. Mature BDNF facilitates hippocampal synaptic potentiation through TrkB. Here we report that proBDNF, by activating p75(NTR), facilitates hippocampal long-term depression (LTD). Electron microscopy showed that p75(NTR) localized in dendritic spines, in addition to afferent terminals, of CA1 neurons. Deletion of p75(NTR) in mice selectively impaired the NMDA receptor-dependent LTD, without affecting other forms of synaptic plasticity. p75(NTR-/-) mice also showed a decrease in the expression of NR2B, an NMDA receptor subunit uniquely involved in LTD. Activation of p75(NTR) by proBDNF enhanced NR2B-dependent LTD and NR2B-mediated synaptic currents. These results show a crucial role for proBDNF-p75(NTR) signaling in LTD and its potential mechanism, and together with the finding that mature BDNF promotes synaptic potentiation, suggest a bidirectional regulation of synaptic plasticity by proBDNF and mature BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Precursores de Proteínas/farmacologia , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Células Cultivadas , Dendritos/metabolismo , Dendritos/ultraestrutura , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Terminações Nervosas/metabolismo , Terminações Nervosas/ultraestrutura , Receptor de Fator de Crescimento Neural , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Fator de Crescimento Neural/deficiência , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
6.
Prog Brain Res ; 169: 251-66, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18394479

RESUMO

Working memory is the ability to maintain representations of task-relevant information for short periods of time to guide subsequent actions or make decisions. Neurons of the prefrontal cortex exhibit persistent firing during the delay period of working memory tasks. Despite extensive studies, the mechanisms underlying this persistent neural activity remain largely obscure. The neurotransmitter systems of dopamine, NMDA, and GABA have been implicated, but further investigations are necessary to establish their precise roles and relationships. Recent research has suggested a new component: brain-derived neurotrophic factor (BDNF) and its high-affinity receptor, TrkB. We review the research on persistent activity and suggest that BDNF/TrkB signaling in a distinct class of interneurons plays an important role in organizing persistent neural activity at the single-neuron and network levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Animais , Córtex Pré-Frontal/fisiologia
7.
J Neurosci ; 26(43): 11208-19, 2006 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-17065460

RESUMO

Integrins are a large family of cell adhesion receptors involved in a variety of cellular functions. To study their roles at central synapses, we used two cre recombinase lines to delete the Itgb1 beta1 integrin gene in forebrain excitatory neurons at different developmental stages. Removal of the beta1 integrins at an embryonic stage resulted in severe cortical lamination defects without affecting the cellular organization of pyramidal neurons in the CA3 and CA1 regions of the hippocampus. Whereas the hippocampal neurons underwent normal dendritic and synaptic differentiation, the adult synapses exhibited deficits in responses to high-frequency stimulation (HFS), as well as in long-term potentiation (LTP). Deletion of beta1 integrin at a later postnatal stage also impaired LTP but not synaptic responses to HFS. Thus, the beta1-class integrins appear to play distinct roles at different stages of synaptic development, critical for the proper maturation of readily releasable pool of vesicles during early development but essential for LTP throughout adult life.


Assuntos
Hipocampo/crescimento & desenvolvimento , Integrina beta1/fisiologia , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo/embriologia , Técnicas In Vitro , Integrina beta1/biossíntese , Masculino , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal/fisiologia , Vesículas Sinápticas/fisiologia
8.
Neuroscientist ; 12(1): 43-56, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16394192

RESUMO

Parvalbumin-positive interneurons, which include basket and chandelier cells, represent a unique class of interneurons. By innervating the soma and the axonal initial segment of pyramidal cells, these interneurons can elicit powerful control on the output of pyramidal cells and consequently are important for a number of physiological processes in the mammalian brain. Recent evidence indicates that neurotrophins regulate the development and functions of parvalbumin-positive interneurons. Disruption of neurotrophin-mediated regulation of interneurons is thought to contribute to the pathological processes underlying CNS dysfunction. This review brings together recently described roles of neurotrophins in migration, differentiation, synaptogenesis during development, and acute effects of neurotrophins in transmission at inhibitory synapses, Cl(-) homeostasis, and network activity of cortical interneurons. The authors also discuss the importance of neurotrophin regulation of GABAergic neurons in schizophrenia and epilepsy.


Assuntos
Córtex Cerebral/fisiologia , Transtornos Cognitivos/fisiopatologia , Interneurônios/fisiologia , Fatores de Crescimento Neural/fisiologia , Animais , Doenças do Sistema Nervoso Central/fisiopatologia , Córtex Cerebral/fisiopatologia , Humanos , Rede Nervosa/fisiologia , Ácido gama-Aminobutírico/fisiologia
9.
J Neurosci ; 23(4): 1125-32, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12598600

RESUMO

De novo protein synthesis and transcription are necessary for the expression of long-lasting synaptic potentiation [long-term potentiation (LTP)] in hippocampal area CA1 and for the consolidation of long-term memory. The stability of LTP and its longevity require macromolecular synthesis at later stages, but a specific role for early protein synthesis has not been identified. Using electrophysiological recording methods in mouse hippocampal slices, we show that multiple trains of high-frequency stimulation provide immediate synaptic immunity to depotentiation. This immunity to depotentiation is dependent on the amount of synaptic stimulation used to induce LTP, it is input specific, and it is prevented by inhibitors of protein synthesis. We propose that local translation mediates input-specific synaptic immunity against depotentiation. We also present evidence suggesting that, in addition to translation, products of transcription can provide cell-wide immunity to depotentiation via heterosynaptic transfer of synaptic immunity between distinct pathways in area CA1. Protein synthesis and transcription may importantly regulate long-term storage of information by conferring synaptic immunity to depotentiation at previously potentiated synapses.


Assuntos
Pareamento Cromossômico/fisiologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração , Biossíntese de Proteínas , Animais , Células Cultivadas , Dendritos/metabolismo , Estimulação Elétrica , Feminino , Cinética , Aprendizagem , Memória , Camundongos , Camundongos Endogâmicos C57BL , Proteínas/genética , Transmissão Sináptica , Transcrição Gênica
10.
Brain Res ; 1380: 106-19, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21078304

RESUMO

Fragile X syndrome is the leading single gene cause of intellectual disabilities. Treatment of a Drosophila model of Fragile X syndrome with metabotropic glutamate receptor (mGluR) antagonists or lithium rescues social and cognitive impairments. A hallmark feature of the Fragile X mouse model is enhanced mGluR-dependent long-term depression (LTD) at Schaffer collateral to CA1 pyramidal synapses of the hippocampus. Here we examine the effects of chronic treatment of Fragile X mice in vivo with lithium or a group II mGluR antagonist on mGluR-LTD at CA1 synapses. We find that long-term lithium treatment initiated during development (5-6 weeks of age) and continued throughout the lifetime of the Fragile X mice until 9-11 months of age restores normal mGluR-LTD. Additionally, chronic short-term treatment beginning in adult Fragile X mice (8 weeks of age) with either lithium or an mGluR antagonist is also able to restore normal mGluR-LTD. Translating the findings of successful pharmacologic intervention from the Drosophila model into the mouse model of Fragile X syndrome is an important advance, in that this identifies and validates these targets as potential therapeutic interventions for the treatment of individuals afflicted with Fragile X syndrome.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Compostos de Lítio/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/fisiopatologia , Compostos de Lítio/uso terapêutico , Masculino , Camundongos , Camundongos Knockout , Plasticidade Neuronal/genética , Receptores de Glutamato Metabotrópico/fisiologia , Transmissão Sináptica/genética
11.
Neuron ; 57(4): 477-9, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-18304477

RESUMO

While Trk receptors can be activated in a neurotrophin-independent manner through "transactivation" by GPCR ligands, its physiological significance in the brain remains unknown. Huang et al. have now identified a novel mechanism of TrkB transactivation. They show that zinc ions can transactivate TrkB independent of neurotrophins and that such a transactivation is important for mossy fiber long-term potentiation (LTP).


Assuntos
Plasticidade Neuronal/fisiologia , Receptor trkB/biossíntese , Sinapses/metabolismo , Ativação Transcricional/fisiologia , Zinco/metabolismo , Animais , Humanos , Receptor trkB/genética , Sinapses/genética
12.
Nat Rev Neurosci ; 6(8): 603-14, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16062169

RESUMO

Neurotrophins have diverse functions in the CNS. Initially synthesized as precursors (proneurotrophins), they are cleaved to produce mature proteins, which promote neuronal survival and enhance synaptic plasticity by activating Trk receptor tyrosine kinases. Recent studies indicate that proneurotrophins serve as signalling molecules by interacting with the p75 neurotrophin receptor (p75NTR). Interestingly, proneurotrophins often have biological effects that oppose those of mature neurotrophins. Therefore, the proteolytic cleavage of proneurotrophins represents a mechanism that controls the direction of action of neurotrophins. New insights into the 'yin and yang' of neurotrophin activity have profound implications for our understanding of the role of neurotrophins in a wide range of cellular processes.


Assuntos
Encéfalo/fisiologia , Fatores de Crescimento Neural/fisiologia , Receptor de Fator de Crescimento Neural/fisiologia , Animais , Humanos
13.
Learn Mem ; 9(4): 202-13, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12177233

RESUMO

The late phase of long-term potentiation (L-LTP) is correlated with some types of long-term memory, but the mechanisms by which L-LTP is modulated by prior synaptic activity are undefined. Activation of protein phosphatases by low-frequency stimulation (LFS) given before induction of L-LTP may significantly modify L-LTP. Using cellular electrophysiological recording methods in mouse hippocampal slices, we show that LFS given before induction of L-LTP inhibited L-LTP in an activity-dependent manner without affecting either basal synaptic strength or the early phase of LTP (E-LTP). This anterograde inhibitory effect of LFS was persistent, required N-methyl-D-aspartate (NMDA) receptor activation, and was blocked by inhibitors of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A). These data indicate that certain patterns of LFS can activate PP1 and/or PP2A, and that long-lasting activation of these phosphatases by prior LFS can suppress the subsequent expression of L-LTP without affecting E-LTP. Because this inhibition of L-LTP is caused by prior synaptic activity that, alone, produced no net effect on synaptic efficacy, we suggest that this is a "silent" form of metaplasticity that may influence long-term information storage by modulating the capacity of synapses to express L-LTP after repeated bouts of activity.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração , Plasticidade Neuronal , Fosfoproteínas Fosfatases/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmissão Sináptica , Animais , Estimulação Elétrica , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Hipocampo/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Fosfatase 1 , Proteína Fosfatase 2 , Transdução de Sinais , Fatores de Tempo
14.
Eur J Neurosci ; 16(10): 1871-6, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12453050

RESUMO

Protein kinases and phosphatases play antagonistic roles in regulating hippocampal long-term potentiation (LTP), with kinase inhibition and phosphatase activation both impairing LTP. The late phase of LTP (L-LTP) requires activation of cAMP-dependent protein kinase (PKA) for its full expression. One way in which PKA may critically modulate L-LTP is by relieving an inhibitory constraint imposed by protein phosphatases. Using mutant PKA mice [R(AB) transgenic mice] that have genetically reduced hippocampal PKA activity, we show that deficient L-LTP in area CA1 of mutant hippocampal slices is rescued by acute application of two inhibitors of protein phosphatase-1 and protein phosphatase-2A (PP1/2A) (okadaic acid and calyculin A). Furthermore, synaptic facilitation induced by forskolin, an adenylyl cyclase activator, was impaired in R(AB) transgenics and was also rescued by a PP1/2A inhibitor in mutant slices. Inhibition of PP1/2A did not affect early LTP (E-LTP) or basal synaptic transmission in mutant and wildtype slices. Our data show that genetic inhibition of PKA impairs L-LTP by reducing PKA-mediated suppression of PP1/2A.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração , Mutação , Fosfoproteínas Fosfatases/metabolismo , Transmissão Sináptica , Animais , Colforsina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Eletrofisiologia , Ativadores de Enzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Masculino , Toxinas Marinhas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ácido Okadáico/farmacologia , Oxazóis/farmacologia , Proteína Fosfatase 1 , Proteína Fosfatase 2
15.
Hippocampus ; 13(2): 293-300, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12699336

RESUMO

Genetic and electrophysiological experiments have defined an important role for cAMP-dependent protein kinase (PKA) in certain forms of long-term potentiation (LTP). However, the characteristics of stimulation that are critical for regulating the PKA-dependence of LTP have not been clearly defined. In the present study, we have used PKA mutant mice (R(AB) transgenic mice), which have reduced PKA activity in neurons within the hippocampus, to explore the role of temporal spacing of synaptic stimulation in regulating the PKA-dependence of LTP. The time interval between successive bursts of electrical stimulation was varied while keeping constant the total number of stimulus pulses. LTP induced by temporally spaced tetraburst synaptic stimulation was impaired in the Schaeffer collateral pathway of hippocampal slices from R(AB) mutant mice. In contrast, LTP induced by temporally compressed tetraburst stimulation was normal in slices from R(AB) mutants, and its long-term maintenance was not significantly affected by bath application of KT-5720, an inhibitor of catalytic subunits of PKA. In slices from wildtype mice, LTP induced by spaced tetraburst stimulation was significantly attenuated by KT-5720. These genetic and pharmacological experiments show that LTP induced by these compressed patterns of stimulation does not require PKA activation. Thus, altering the temporal spacing of synaptic stimulation per se critically modulates the PKA-dependence of hippocampal LTP. PKA-dependent LTP is selectively recruited by temporally spaced, multiburst synaptic stimulation.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Animais , Estimulação Elétrica , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Técnicas In Vitro , Masculino , Camundongos , Camundongos Transgênicos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/fisiologia
16.
J Neurophysiol ; 87(6): 2770-7, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12037179

RESUMO

Spaced training is generally more effective than massed training for learning and memory, but the molecular mechanisms underlying this trial spacing effect remain poorly characterized. One potential molecular basis for the trial spacing effect is the differential modulation, by distinct temporal patterns of neuronal activity, of protein synthesis-dependent processes that contribute to the expression of specific forms of synaptic plasticity in the mammalian brain. Long-term potentiation (LTP) is a type of synaptic modification that may be important for certain forms of memory storage in the mammalian brain. To explore the role of protein synthesis in the trial spacing effect, we assessed the protein synthesis dependence of hippocampal LTP induced by 100-Hz tetraburst stimulation delivered to mouse hippocampal slices in either a temporally massed (20-s interburst interval) or spaced (5-min interburst interval) fashion. To extend our studies to the behavioral level, we trained mice in fear conditioning using either a massed or spaced training protocol and examined the sensitivity of long-term memory to protein synthesis inhibition. Larger LTP was induced by spaced stimulation in hippocampal slices. This improvement of synaptic potentiation following temporally spaced synaptic stimulation in slices was attenuated by bath application of an inhibitor of protein synthesis. Further, the maintenance of LTP induced by spaced synaptic stimulation was more sensitive to disruption by anisomycin than the maintenance of LTP elicited following massed stimulation. Temporally spaced behavioral training improved long-term memory for contextual but not for cued fear conditioning, and this enhancement of memory for contextual fear was also protein synthesis dependent. Our data reveal that altering the temporal spacing of synaptic stimulation and behavioral training improved hippocampal LTP and enhanced contextual long-term memory. From a broad perspective, these results suggest that the recruitment of protein synthesis-dependent processes important for long-term memory and for long-lasting forms of LTP can be modulated by the temporal profiles of behavioral training and synaptic stimulation.


Assuntos
Anisomicina/farmacologia , Condicionamento Psicológico/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Inibidores da Síntese de Proteínas/farmacologia , Animais , Condicionamento Psicológico/efeitos dos fármacos , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Medo/fisiologia , Feminino , Hipocampo/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa