RESUMO
[This corrects the article DOI: 10.1371/journal.ppat.1010092.].
RESUMO
The development of safe and effective vaccines to prevent SARS-CoV-2 infections remains an urgent priority worldwide. We have used a recombinant vesicular stomatitis virus (rVSV)-based prime-boost immunization strategy to develop an effective COVID-19 vaccine candidate. We have constructed VSV genomes carrying exogenous genes resulting in the production of avirulent rVSV carrying the full-length spike protein (SF), the S1 subunit, or the receptor-binding domain (RBD) plus envelope (E) protein of SARS-CoV-2. Adding the honeybee melittin signal peptide (msp) to the N-terminus enhanced the protein expression, and adding the VSV G protein transmembrane domain and the cytoplasmic tail (Gtc) enhanced protein incorporation into pseudotype VSV. All rVSVs expressed three different forms of SARS-CoV-2 spike proteins, but chimeras with VSV-Gtc demonstrated the highest rVSV-associated expression. In immunized mice, rVSV with chimeric S protein-Gtc derivatives induced the highest level of potent neutralizing antibodies and T cell responses, and rVSV harboring the full-length msp-SF-Gtc proved to be the superior immunogen. More importantly, rVSV-msp-SF-Gtc vaccinated animals were completely protected from a subsequent SARS-CoV-2 challenge. Overall, we have developed an efficient strategy to induce a protective response in SARS-CoV-2 challenged immunized mice. Vaccination with our rVSV-based vector may be an effective solution in the global fight against COVID-19.
Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Glicoproteína da Espícula de Coronavírus/imunologia , Vírus da Estomatite Vesicular Indiana/genética , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Chlorocebus aethiops , Humanos , Imunização , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Proteínas Virais/genética , Proteínas Virais/imunologiaRESUMO
Throughout the recent COVID-19 pandemic, South Korea led national efforts to develop vaccines and therapeutics for SARS-CoV-2. The project proceeded as follows: 1) evaluation system setup (including Animal Biosafety Level 3 (ABSL3) facility alliance, standardized nonclinical evaluation protocol, and laboratory information management system), 2) application (including committee review and selection), and 3) evaluation (including expert judgment and reporting). After receiving 101 applications, the selection committee reviewed pharmacokinetics, toxicity, and efficacy data and selected 32 final candidates. In the nonclinical efficacy test, we used golden Syrian hamsters and human angiotensin-converting enzyme 2 transgenic mice under a cytokeratin 18 promoter to evaluate mortality, clinical signs, body weight, viral titer, neutralizing antibody presence, and histopathology. These data indicated eight new drugs and one repositioned drug having significant efficacy for COVID-19. Three vaccine and four antiviral drugs exerted significant protective activities against SARS-CoV-2 pathogenesis. Additionally, two anti-inflammatory drugs showed therapeutic effects on lung lesions and weight loss through their mechanism of action but did not affect viral replication. Along with systematic verification of COVID-19 animal models through large-scale studies, our findings suggest that ABSL3 multicenter alliance and nonclinical evaluation protocol standardization can promote reliable efficacy testing against COVID-19, thus expediting medical product development.
Assuntos
COVID-19 , Animais , Cricetinae , Camundongos , Humanos , SARS-CoV-2 , Pandemias , Anticorpos Neutralizantes , Mesocricetus , Modelos Animais de DoençasRESUMO
BACKGROUND: Numerous vaccine strategies are being advanced to control SARS-CoV-2, the cause of the COVID-19 pandemic. EuCorVac-19 (ECV19) is a recombinant protein nanoparticle vaccine that displays the SARS-CoV-2 receptor-binding domain (RBD) on immunogenic nanoliposomes. METHODS: Initial study of a phase 2 randomized, observer-blind, placebo-controlled trial to assess the immunogenicity, safety, and tolerance of ECV19 was carried out between July and October 2021. Two hundred twenty-nine participants were enrolled at 5 hospital sites in South Korea. Healthy adults aged 19-75 without prior known exposure to COVID-19 were vaccinated intramuscularly on day 0 and day 21. Of the participants who received two vaccine doses according to protocol, 100 received high-dose ECV19 (20 µg RBD), 96 received low-dose ECV19 (10 µg RBD), and 27 received placebo. Local and systemic adverse events were monitored. Serum was assessed on days 0, 21, and 42 for immunogenicity analysis by ELISA and neutralizing antibody response by focus reduction neutralization test (FRNT). RESULTS: Low-grade injection site tenderness and pain were observed in most participants. Solicited systemic adverse events were less frequent, and mostly involved low-grade fatigue/malaise, myalgia, and headache. No clinical laboratory abnormalities were observed. Adverse events did not increase with the second injection and no serious adverse events were solicited by ECV19. On day 42, Spike IgG geometric mean ELISA titers were 0.8, 211, and 590 Spike binding antibody units (BAU/mL) for placebo, low-dose and high-dose ECV19, respectively (p < 0.001 between groups). Neutralizing antibodies levels of the low-dose and high-dose ECV19 groups had FRNT50 geometric mean values of 129 and 316, respectively. Boosting responses and dose responses were observed. Antibodies against the RBD correlated with antibodies against the Spike and with virus neutralization. CONCLUSIONS: ECV19 was generally well-tolerated and induced antibodies in a dose-dependent manner that neutralized SARS-CoV-2. The unique liposome display approach of ECV19, which lacks any immunogenic protein components besides the antigen itself, coupled with the lack of increased adverse events during boosting suggest the vaccine platform may be amenable to multiple boosting regimes in the future. Taken together, these findings motivate further investigation of ECV19 in larger scale clinical testing that is underway. TRIAL REGISTRATION: The trial was registered at ClinicalTrials.gov as # NCT04783311.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Humanos , Anticorpos Neutralizantes , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Pandemias , Proteínas Recombinantes/genética , SARS-CoV-2 , Adulto Jovem , Pessoa de Meia-Idade , IdosoRESUMO
BACKGROUND: Bacillus ancthracis causes cutaneous, pulmonary, or gastrointestinal forms of anthrax. B. anthracis is a pathogenic bacterium that is potentially to be used in bioterrorism because it can be produced in the form of spores. Currently, protective antigen (PA)-based vaccines are being used for the prevention of anthrax, but it is necessary to develop more safe and effective vaccines due to their prolonged immunization schedules and adverse reactions. METHODS: We selected the lipoprotein GBAA0190, a potent inducer of host immune response, present in anthrax spores as a novel potential vaccine candidate. Then, we evaluated its immune-stimulating activity in the bone marrow-derived macrophages (BMDMs) using enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Protective efficacy of GBAA0190 was evaluated in the guinea pig (GP) model. RESULTS: The recombinant GBAA0190 (r0190) protein induced the expression of various inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1α (MIP-1α) in the BMDMs. These immune responses were mediated through toll-like receptor 1/2 via activation of mitogen-activated protein (MAP) kinase and Nuclear factor-κB (NF-κB) pathways. We demonstrated that not only immunization of r0190 alone, but also combined immunization with r0190 and recombinant PA showed significant protective efficacy against B. anthracis spore challenges in the GP model. CONCLUSIONS: Our results suggest that r0190 may be a potential target for anthrax vaccine.
Assuntos
Vacinas contra Antraz/imunologia , Antraz/prevenção & controle , Bacillus anthracis/imunologia , Lipoproteínas/imunologia , Animais , Vacinas contra Antraz/administração & dosagem , Vacinas contra Antraz/genética , Citocinas/metabolismo , Cobaias , Imunização , Lipoproteínas/administração & dosagem , Lipoproteínas/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Transdução de Sinais , Esporos Bacterianos/imunologia , Receptores Toll-Like/metabolismoRESUMO
The SARS-CoV-2 variant is rapidly spreading across the world and causes to resurge infections. We previously reported that CT-P59 presented its in vivo potency against Beta variants, despite its reduced activity in cell experiments. Yet, it remains uncertain to exert the antiviral effect of CT-P59 on Gamma, Delta and its associated variants (L452R). To tackle this question, we carried out cell tests and animal studies. CT-P59 showed neutralization against Gamma, Delta, Epsilon, and Kappa variants in cells, with reduced susceptibility. The mouse challenge experiments with Gamma and Delta variants substantiated in vivo potency of CT-P59 showing symptom remission and virus abrogation in the respiratory tract. Collectively, cell and animal studies showed that CT-P59 is effective against Gamma and Delta variants infection, hinting that CT-P59 has therapeutic potential for patients infected with Gamma, Delta and its associated variants.
Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Neutralizantes/farmacologia , Tratamento Farmacológico da COVID-19 , Modelos Animais de Doenças , Imunoglobulina G/farmacologia , SARS-CoV-2/efeitos dos fármacos , Animais , Antivirais/farmacologia , Peso Corporal/efeitos dos fármacos , COVID-19/virologia , Feminino , Humanos , Camundongos Transgênicos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Análise de SobrevidaRESUMO
Since Bacillus anthracis is a high-risk pathogen and a potential tool for bioterrorism, numerous therapeutic methods including passive immunization have been actively developed. Using a human monoclonal antibody phage display library, we screened new therapeutic antibodies for anthrax infection against protective antigen (PA) of B. anthracis. Among 5 selected clones of antibodies based on enzyme-linked immunosorbent assay (ELISA) results, 7B1 showed neutralizing activity to anthrax lethal toxin (LT) by inhibiting binding of the domain 4 of PA (PD4) to its cellular receptors. Through light chain shuffling process, we improved the productivity of 7B1 up to 25 folds. The light chain shuffled 7B1 antibody showed protective activity against LT both in vitro and in vivo. Furthermore, the antibody also conferred protection of mice from 3â¯×â¯LD50 challenges of fully virulent anthrax spores. Our result expands the possibility of developing a new therapeutic antibody for anthrax cure.
Assuntos
Antraz/prevenção & controle , Anticorpos/uso terapêutico , Antígenos de Bactérias/imunologia , Bacillus anthracis/imunologia , Toxinas Bacterianas/imunologia , Sequência de Aminoácidos , Animais , Antraz/imunologia , Anticorpos/química , Anticorpos/imunologia , Antígenos de Bactérias/química , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/química , Linhagem Celular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Biblioteca de PeptídeosRESUMO
Poly-γ-d-glutamic acid (PGA) of anthrax is an important pathogenic factor due to its anti-phagocytic activity. Additionally, PGA has the ability to activate mouse macrophages for the secretion of cytokines through Toll-like receptor (TLR) 2. Peptidoglycan (PGN), a major bacterial cell-wall component, induces inflammatory responses in the host. We assessed whether PGA can induce maturation and cytokine expression in immature mouse dendritic cells (DCs) in the existence of muramyl dipeptide (MDP), the minimum motif of PGN with immunostimulatory activity. Stimulation of immature DCs with PGA or MDP alone augmented expression of costimulatory molecules and MHC class II proteins, which are all cell surface markers indicative of maturation. The observed effects were further enhanced by costimulation of PGA and MDP. PGA alone was sufficient to induce expression of TNF-α, IL-6, MCP-1, and MIP1-α, whereas MDP alone did not under the same conditions. Treatment with MDP enhanced PGA-induced expression of the tested inflammatory mediators; however, the synergistic effect found for PGA and MDP was not observed in TLR2- or nucleotide-binding oligomerization domain (NOD) 2-knockout DCs. Additionally, MDP augmented PGA-induced MAP kinases and NF-κB activation, which is crucial for expression of cytokines. Furthermore, MAP kinase and NF-κB inhibitors attenuated MDP enhancement of PGA-induced cytokine production. In addition, co-culture of splenocytes and PGA/MDP-matured DCs induced higher expression of IL-2 and IFN-γ compared to that of splenocytes and PGA-matured DCs. Collectively, our results suggest that PGA and MDP cooperatively induce inflammatory responses in mouse DCs through TLR2 and NOD2 via MAP kinase and NF-κB pathways, subsequently leading to lymphocyte activation.
Assuntos
Bacillus anthracis/metabolismo , Células Dendríticas/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Ácido Poliglutâmico/análogos & derivados , Animais , Citocinas/metabolismo , Células Dendríticas/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Peptidoglicano/metabolismo , Ácido Poliglutâmico/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND: As the number of large-scale studies involving multiple organizations producing data has steadily increased, an integrated system for a common interoperable format is needed. In response to the coronavirus disease 2019 (COVID-19) pandemic, a number of global efforts are underway to develop vaccines and therapeutics. We are therefore observing an explosion in the proliferation of COVID-19 data, and interoperability is highly requested in multiple institutions participating simultaneously in COVID-19 pandemic research. RESULTS: In this study, a laboratory information management system (LIMS) approach has been adopted to systemically manage various COVID-19 non-clinical trial data, including mortality, clinical signs, body weight, body temperature, organ weights, viral titer (viral replication and viral RNA), and multiorgan histopathology, from multiple institutions based on a web interface. The main aim of the implemented system is to integrate, standardize, and organize data collected from laboratories in multiple institutes for COVID-19 non-clinical efficacy testings. Six animal biosafety level 3 institutions proved the feasibility of our system. Substantial benefits were shown by maximizing collaborative high-quality non-clinical research. CONCLUSIONS: This LIMS platform can be used for future outbreaks, leading to accelerated medical product development through the systematic management of extensive data from non-clinical animal studies.
RESUMO
SARS-CoV-2, the coronavirus strain that initiated the COVID-19 pandemic, and its subsequent variants present challenges to vaccine development and treatment. As the coronavirus evades the host innate immune response at the initial stage of infection, the disease can have a long nonsymptomatic period. The uridylate-specific endoribonuclease Nsp15 processes the viral genome for replication and cleaves the polyU sequence in the viral RNA to interfere with the host immune system. This study screened natural compounds in vitro to identify inhibitors against Nsp15 from SARS-CoV-2. Three natural compounds, epigallocatechin gallate (EGCG), baicalin, and quercetin, were identified as potential inhibitors. Potent antiviral activity of EGCG was confirmed in plaque reduction neutralization tests with a SARS-CoV-2 strain (PRNT50 = 0.20 µM). Because the compound has been used as a functional food ingredient due to its beneficial health effects, we theorize that this natural compound may help inhibit viral replication while minimizing safety issues.
Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Catequina/análogos & derivados , Endorribonucleases , Humanos , Pandemias , Endorribonucleases Específicas de Uridilato , Proteínas não Estruturais ViraisRESUMO
BACKGROUND: Efficient RNA transfer to dendritic cell and T cells by electroporation have been successfully applied for immunotherapy. Herein, RNA electroporation was used to transfer antigen-specific receptor (scFv) gene to cytokine-induced killer cells (CIK). METHODS: CIK was generated from peripheral blood mononuclear cells with anti-CD3 antibody, interleukin-2, and interferon (IFN)-gamma for 14 days and showed typical characteristics of CIK expressing both CD3+ and CD56+ markers and NKG2D+. CIK could lyse K562 cells, but not SKOV3 and MCF7/Her-2/neu. RESULTS: After RNA encoding anti-Her-2/neu chimeric immune receptor (CIR) with signaling portion of CD28 and CD3zeta was electroporated to CIK, more than 95% of CIK expressed anti-Her-2/neu CIR (CIR-CIK). CIR-CIK was able to produce cytokines including IFN-gamma, granulocyte-macrophage colony-stimulating factor, and tumor necrosis factor-alpha, and show cytotoxicity specific to tumor cell lines expressing Her-2/neu, SKOV3, and MCF7/Her-2/neu. Adoptive transfer of CIR-CIK in SKOV3 xenograft nude mice model led to significant inhibition of tumor growth compared with transfer of mock-transduced CIK and showed higher inhibition than that of Herceptin, humanized monoclonal antibody specific for Her-2/neu. These results suggest that RNA transfer is the convenient and efficient strategy to introduce antigen-specificity into CIK and provide potential therapeutic value of CIR-CIK in the treatment of tumors.
Assuntos
Células Matadoras Induzidas por Citocinas/metabolismo , Citotoxicidade Imunológica , Neoplasias Experimentais/terapia , RNA/administração & dosagem , Receptor ErbB-2/imunologia , Anticorpos de Cadeia Única/genética , Transferência Adotiva , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Células Cultivadas , Células Matadoras Induzidas por Citocinas/imunologia , Eletroporação , Humanos , Camundongos , Camundongos Nus , RNA/uso terapêutico , Transplante Heterólogo , Resultado do TratamentoRESUMO
Although dendritic cells (DC) have been well demonstrated as a strong cellular adjuvant for a tumor vaccine, there are several limitations for clinical application. A protein-based vaccine using a potent adjuvant is an appealing approach for tumor antigen-specific immunotherapy because of their simplicity, safety, efficacy and capacity for repeated administration. CpG-oligodeoxynucleotides (ODN) have been used as adjuvants to stimulate innate and adaptive immune responses for cancer treatment. The authors evaluated the adjuvant effects of CpG-ODN in a vaccine incorporating recombinant fusion protein of the HIV TAT PTD domain and carcinoembryonic antigen (TAT-CEA). Mice vaccinated with TAT-CEA and CpG-ODN (TAT-CEA + CpG) showed enhanced CEA-specific immunity, including cytotoxic T-lymphocytes (CTL) activity and interferon (IFN)-gamma secreting T cells compared with CEA and CpG-ODN (CEA + CpG) or TAT-CEA vaccination alone. Vaccination with TAT-CEA + CpG elicited Th1-based responses, as indicated by the higher ratio of immunoglobulin (Ig)G2a antibody/IgG1 antibodies specific for CEA. The survival rate was significantly increased after vaccination with TAT-CEA + CpG in a tumor model using MC38/CEA2. Furthermore, the TAT-CEA +/- CpG vaccine groups showed similar antitumor immunity to the CEA peptide-pulsed DC (CEA peptide/DC) vaccine groups. These data suggest that coadministration of TAT fusion protein with CpG-ODN may serve as a potential formulation for enhancing antitumor activity.
Assuntos
Adjuvantes Imunológicos/uso terapêutico , Proteínas Reguladoras de Apoptose/uso terapêutico , Vacinas Anticâncer/imunologia , Antígeno Carcinoembrionário/imunologia , Oligodesoxirribonucleotídeos/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Produtos do Gene tat do Vírus da Imunodeficiência Humana/uso terapêutico , Adjuvantes Imunológicos/administração & dosagem , Animais , Proteínas Reguladoras de Apoptose/administração & dosagem , Vacinas Anticâncer/uso terapêutico , Antígeno Carcinoembrionário/administração & dosagem , Antígeno Carcinoembrionário/uso terapêutico , Feminino , Imunoterapia Adotiva , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/administração & dosagem , Proteínas Recombinantes de Fusão/administração & dosagem , Survivina , Linfócitos T Citotóxicos/imunologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/administração & dosagemRESUMO
Although chemotherapy remains among the best treatment options for most cancers, adjuvant therapies such as dendritic cell (DC)-based immunotherapy have been added to treatment protocols to destroy residual tumour cells. Combination treatment with low-dose temozolomide (TMZ) chemotherapy followed by vaccination with TAT-survivin-pulsed DCs enhanced T-cell responses specific for survivin and improved survival rate, as compared with DC alone or TMZ alone. Moreover, antigen-specific immunity appears to be mediated by CD8(+) T cells, as determined by in vitro T-cell subset depletion. These studies demonstrated that a combination of low-dose TMZ chemotherapy and TAT-based DC immunotherapy may be a novel strategy for safe and effective treatment of malignant gliomas.
Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Dacarbazina/análogos & derivados , Células Dendríticas/transplante , Glioma/terapia , Animais , Proteínas Reguladoras de Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Terapia Combinada , Dacarbazina/uso terapêutico , Feminino , Glioma/tratamento farmacológico , Glioma/imunologia , Imunidade Celular , Proteínas Inibidoras de Apoptose , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/imunologia , Proteínas de Neoplasias/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Repressoras , Baço/imunologia , Análise de Sobrevida , Survivina , Temozolomida , Transdução Genética , Resultado do Tratamento , Produtos do Gene tat do Vírus da Imunodeficiência Humana/imunologiaRESUMO
Probiotics in livestock feed supplements are considered a replacement for antibiotics that enhance gastrointestinal immunity. Although bacterial cell wall components have been proposed to be associated with probiotic function, little evidence demonstrates that they are responsible for probiotic functions in livestock. The present study demonstrated that lipoteichoic acid (LTA) of Lactobacillus plantarum (Lp.LTA) confers anti-inflammatory responses in porcine intestinal epithelial cell line, IPEC-J2. A synthetic analog of viral double-stranded RNA, poly I:C, dose-dependently induced IL-8 production at the mRNA and protein levels in IPEC-J2 cells. Lp.LTA, but not lipoprotein or peptidoglycan from L. plantarum, exclusively suppressed poly I:C-induced IL-8 production. Compared with LTAs from other probiotic Lactobacillus strains including L. delbrueckii, L. sakei, and L. rhamnosus GG, Lp.LTA had higher potential to suppress poly I:C-induced IL-8 production. Dealanylated or deacylated Lp.LTA did not suppress poly I:C-induced IL-8 production, suggesting that D-alanine and lipid moieties in the Lp.LTA structure were responsible for the inhibition. Furthermore, Lp.LTA attenuated the phosphorylation of ERK and p38 kinase as well as the activation of NF-κB, resulting in decreased IL-8 production. Taken together, these results suggest that Lp.LTA acts as an effector molecule to inhibit viral pathogen-induced inflammatory responses in porcine intestinal epithelial cells.
RESUMO
Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity.
Assuntos
Formação de Anticorpos/imunologia , Antígenos de Bactérias/imunologia , Bacillus anthracis/imunologia , Toxinas Bacterianas/imunologia , Imunização , Memória Imunológica , Administração Intranasal , Animais , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células , Toxina da Cólera/imunologia , Citocinas/biossíntese , Feminino , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Mucosa Nasal/imunologia , Plasmócitos/imunologia , Proteínas Recombinantes , Fatores de TempoRESUMO
BAFF plays an important role in the development of B cells. Here, we investigated the effect of IFN-γ on BAFF expression in human intestinal epithelial cells. IFN-γ induced soluble and membrane-bound BAFF production in a dose- and time-dependent manner. IFN-γ-induced BAFF release from polarized intestinal epithelial cells was observed in apical and basolateral compartments. JAK I inhibitor suppressed IFN-γ-induced BAFF expression. Moreover, IFN-γ enhanced STAT1 phosphorylation and expression of IRF-1. Transient transfection and reporter gene assay showed that the BAFF promoter region spanning -750 to -500 bp from the translation initiation site was crucial for IFN-γ-induced BAFF expression. Nucleotide sequence analysis revealed a GAS element in the promoter region. ChIP assay confirmed the enhanced binding of phosphorylated STAT1 to the BAFF promoter region at -800 to -601 bp. Furthermore, IFN-γ enhanced DNA binding to GAS and its transcriptional activation, as determined by the EMSA and reporter gene assay. Collectively, these results suggest that IFN-γ induces BAFF expression in human intestinal epithelial cells through JAK/STAT signaling pathways that might activate the GAS and IRF-1-binding element in the BAFF promoter.
Assuntos
Fator Ativador de Células B/imunologia , Células Epiteliais/imunologia , Interferon gama/imunologia , Mucosa Intestinal/imunologia , Janus Quinases/imunologia , Fator de Transcrição STAT1/imunologia , Transdução de Sinais/imunologia , Ativação Transcricional/imunologia , Fator Ativador de Células B/genética , Linhagem Celular , Células Epiteliais/citologia , Humanos , Interferon gama/genética , Mucosa Intestinal/citologia , Janus Quinases/genética , Fosforilação/genética , Fosforilação/imunologia , Elementos de Resposta/genética , Elementos de Resposta/imunologia , Fator de Transcrição STAT1/genética , Transdução de Sinais/genética , Ativação Transcricional/genéticaRESUMO
Influenza viruses are respiratory pathogens that continue to pose a significantly high risk of morbidity and mortality of humans worldwide. Vaccination is one of the most effective strategies for minimizing damages by influenza outbreaks. In addition, rapid development and production of efficient vaccine with convenient administration is required in case of influenza pandemic. In this study, we generated recombinant influenza virus hemagglutinin protein 1 (sHA1) of 2009 pandemic influenza virus as a vaccine candidate using a well-established bacterial expression system and administered it into mice via sublingual (s.l.) route. We found that s.l. immunization with the recombinant sHA1 plus cholera toxin (CT) induced mucosal antibodies as well as systemic antibodies including neutralizing Abs and provided complete protection against infection with pandemic influenza virus A/CA/04/09 (H1N1) in mice. Indeed, the protection efficacy was comparable with that induced by intramuscular (i.m.) immunization route utilized as general administration route of influenza vaccine. These results suggest that s.l. vaccination with the recombinant non-glycosylated HA1 protein offers an alternative strategy to control influenza outbreaks including pandemics.
Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/genética , Administração Sublingual , Animais , Anticorpos Neutralizantes/análise , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Toxina da Cólera/administração & dosagem , Toxina da Cólera/genética , Modelos Animais de Doenças , ELISPOT , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Imunidade nas Mucosas , Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/genética , Leucócitos Mononucleares/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Soro/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Carga ViralRESUMO
Although intestinal epithelial cells (IECs) are continuously exposed to high densities of enteric bacteria, they are not highly responsive to microbe-associated molecular patterns (MAMPs). However, inflammatory cytokines such as interferon-γ (IFN-γ) are potentially capable of priming IECs to enhance responsiveness to MAMPs. In this study, we observed that heat-killed Vibrio cholerae (HKVC) and its lipopolysaccharide (LPS) poorly induced IL-8 production in a human IEC line, HT-29. However, both HKVC and the LPS showed a substantial induction of IL-8 production in IFN-γ-primed HT-29 cells. LPS-induced IL-8 production was proportional to the IFN-γ-priming period and LPS could not induce IL-8 production in the presence of polymyxin B. Moreover, LPS-induced IL-8 production in the IFN-γ-primed HT-29 cells was mediated through signaling pathways requiring p38 kinase and ERK, but not the JNK/SAPK pathway. Since deleted in malignant brain tumor 1 (DMBT1) is known to interact with and antagonize the action of LPS, we hypothesized that IFN-γ enhanced the responsiveness to LPS in HT-29 through down-regulation of DMBT1. We found that IFN-γ indeed attenuated DMBT1 expression at both the mRNA and protein levels in HT-29 cells. Conversely, when the cells were transfected with small interfering RNA to specifically silence DMBT1, IL-8 expression was augmented even in the absence of IFN-γ and the augmentation was further enhanced by treatment with V. cholerae LPS. Since IFN-γ is known to increase IFN-ß expression in the IECs, we examined if IFN-ß functioned similar to IFN-γ. Although IFN-ß alone was able to induce IL-8 expression, it failed to render HT-29 cells responsive to V. cholerae LPS. In conclusion, our study suggests that IFN-γ primes IECs to become responsive to V. cholerae and its LPS by suppressing the expression of DMBT1.
Assuntos
Células Epiteliais/efeitos dos fármacos , Interferon gama/farmacologia , Intestinos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Receptores de Superfície Celular/antagonistas & inibidores , Vibrio cholerae/fisiologia , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Regulação para Baixo , Células Epiteliais/citologia , Células Epiteliais/imunologia , Expressão Gênica , Células HT29 , Temperatura Alta , Humanos , Interferon beta/farmacologia , Interleucina-8/biossíntese , Interleucina-8/imunologia , Intestinos/citologia , Intestinos/imunologia , Polimixina B/farmacologia , RNA Interferente Pequeno/genética , Receptores de Superfície Celular/genética , Transdução de Sinais , Proteínas Supressoras de TumorRESUMO
RNA electroporation as a gene delivery method is more feasible and safer as compared with viral vectors. RNA-loaded dendritic cells (DC) have been used to induce T cell responses against tumor rejection antigens and B cells can also act as antigen-presenting cells for cellular vaccines. In this study, we compared B cells and DC, after electroporation with carcinoembryonic antigen (CEA) RNA, for their capacity to generate cytotoxic T lymphocytes and antitumor immunity. Vaccination using these B cells induced levels of IFN-gamma-secreting T cells and cytotoxic T cells comparable to those induced by DC. Intravenous administration was the optimum route for the B cell vaccine, while subcutaneous administration was the optimum route for the DC vaccine. The B cell vaccine predominantly generated CEA-specific CD4(+) T cells, whereas the DC vaccine generated CD8(+) T cells. Moreover, the B cell vaccine induced higher levels of anti-CEA antibodies than the DC vaccine. A heterogeneous prime-boost using B cells and DC failed to show any synergistic effects; however, the B cell vaccine did inhibit tumor growth and prolonged survival to a similar extent as the DC vaccine. Such RNA-electroporated B cells may prove useful as cellular tumor vaccines with potential clinical application.