Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 479(6): 805-823, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35298586

RESUMO

The regulation of lipid metabolism in oil seeds is still not fully understood and increasing our knowledge in this regard is of great economic, as well as intellectual, importance. Oilseed rape (Brassica napus) is a major global oil crop where increases in triacylglycerol (TAG) accumulation have been achieved by overexpression of relevant biosynthetic enzymes. In this study, we expressed Arabidopsis phospholipid: diacylglycerol acyltransferase (PDAT1), one of the two major TAG-forming plant enzymes in B. napus DH12075 to evaluate its effect on lipid metabolism in developing seeds and to estimate its flux control coefficient. Despite several-fold increase in PDAT activity, seeds of three independently generated PDAT transgenic events showed a small but consistent decrease in seed oil content and had altered fatty acid composition of phosphoglycerides and TAG, towards less unsaturation. Mass spectrometry imaging of seed sections confirmed the shift in lipid compositions and indicated that PDAT overexpression altered the distinct heterogeneous distributions of phosphatidylcholine (PC) molecular species. Similar, but less pronounced, changes in TAG molecular species distributions were observed. Our data indicate that PDAT exerts a small, negative, flux control on TAG biosynthesis and could have under-appreciated effects in fine-tuning of B. napus seed lipid composition in a tissue-specific manner. This has important implications for efforts to increase oil accumulation in similar crops.


Assuntos
Brassica napus , Brassica napus/genética , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Metabolismo dos Lipídeos , Fosfolipídeos/metabolismo , Sementes/metabolismo
2.
Plant Cell Physiol ; 60(12): 2812-2825, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504915

RESUMO

Production of vegetable oils is a vital agricultural resource and oilseed rape (Brassica napus) is the third most important oil crop globally. Although the regulation of lipid biosynthesis in oilseeds is still not fully defined, the acyl-CoA-binding proteins (ACBPs) have been reported to be involved in such metabolism, including oil accumulation, in several plant species. In this study, progressive changes in gene expression in embryos and seed coats at different stages of seed development were comprehensively investigated by transcriptomic analyses in B. napus, revealing dynamic changes in the expression of genes involved in lipid biosynthesis. We show that genes encoding BnACBP proteins show distinct changes in expression at different developmental stages of seed development and show markedly different expression between embryos and seed coats. Both isoforms of the ankyrin-repeat BnACBP2 increased during the oil accumulation period of embryo development. By contrast, the expression of the three most abundant isoforms of the small molecular mass BnACBP6 in embryos showed progressive reduction, despite having the highest overall expression level. In seed coats, BnACBP3, BnACBP4 and BnACBP5 expression remained constant during development, whereas the two major isoforms of BnACBP6 increased, contrasting with the data from embryos. We conclude that genes related to fatty acid and triacylglycerol biosynthesis showing dynamic expression changes may regulate the lipid distribution in embryos and seed coats of B. napus and that BnACBP2 and BnACBP6 are potentially important for oil accumulation.


Assuntos
Brassica napus/embriologia , Brassica napus/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/fisiologia , Transcriptoma/genética , Transcriptoma/fisiologia
3.
New Phytol ; 224(2): 700-711, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31400160

RESUMO

Lysophosphatidate acyltransferase (LPAAT) catalyses the second step of the Kennedy pathway for triacylglycerol (TAG) synthesis. In this study we expressed Trapaeolum majus LPAAT in Brassica napus (B. napus) cv 12075 to evaluate the effects on lipid synthesis and estimate the flux control coefficient for LPAAT. We estimated the flux control coefficient of LPAAT in a whole plant context by deriving a relationship between it and overall lipid accumulation, given that this process is a exponential. Increasing LPAAT activity resulted in greater TAG accumulation in seeds of between 25% and 29%; altered fatty acid distributions in seed lipids (particularly those of the Kennedy pathway); and a redistribution of label from 14 C-glycerol between phosphoglycerides. Greater LPAAT activity in seeds led to an increase in TAG content despite its low intrinsic flux control coefficient on account of the exponential nature of lipid accumulation that amplifies the effect of the small flux increment achieved by increasing its activity. We have also developed a novel application of metabolic control analysis likely to have broad application as it determines the in planta flux control that a single component has upon accumulation of storage products.


Assuntos
Aciltransferases/metabolismo , Brassica napus/enzimologia , Sementes/química , Triglicerídeos/metabolismo , Aciltransferases/genética , Brassica napus/metabolismo , DNA de Plantas , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas , Triglicerídeos/química , Tropaeolum/enzimologia , Tropaeolum/genética
4.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(3): 339-348, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29275220

RESUMO

With dwindling available agricultural land, concurrent with increased demand for oil, there is much current interest in raising oil crop productivity. We have been addressing this issue by studying the regulation of oil accumulation in oilseed rape (Brassica napus L). As part of this research we have carried out a detailed lipidomic analysis of developing seeds. The molecular species distribution in individual lipid classes revealed quite distinct patterns and showed where metabolic connections were important. As the seeds developed, the molecular species distributions changed, especially in the period of early (20days after flowering, DAF) to mid phase (27DAF) of oil accumulation. The patterns of molecular species of diacylglycerol, phosphatidylcholine and acyl-CoAs were used to predict the possible relative contributions of diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase to triacylglycerol production. Our calculations suggest that DGAT may hold a more important role in influencing the molecular composition of TAG. Enzyme selectivity had an important influence on the final molecular species patterns. Our data contribute significantly to our understanding of lipid accumulation in the world's third most important oil crop.


Assuntos
Brassica napus/metabolismo , Metabolismo dos Lipídeos/fisiologia , Sementes/crescimento & desenvolvimento , Brassica napus/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Sementes/genética
5.
Plant Physiol ; 173(4): 1998-2009, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28188274

RESUMO

The regulation of lipid synthesis in oil seeds is still not fully understood. Oilseed rape (Brassica napus) is the third most productive vegetable oil crop on the global market; therefore, increasing our understanding of lipid accumulation in oilseed rape seeds is of great economic, as well as intellectual, importance. Matrix-assisted laser/desorption ionization-mass spectrometry imaging (MALDI-MSI) is a technique that allows the mapping of metabolites directly onto intact biological tissues, giving a spatial context to metabolism. We have used MALDI-MSI to study the spatial distribution of two major lipid species, triacylglycerols and phosphatidylcholines. A dramatic, heterogenous landscape of molecular species was revealed, demonstrating significantly different lipid compositions between the various tissue types within the seed. The embryonic axis was found to be particularly enriched in palmitic acid, while the seed coat/aleurone layer accumulated vaccenic, linoleic, and α-linoleic acids. Furthermore, the lipid composition of the inner and outer cotyledons differed from each other, a remarkable discovery given the supposed identical functionality of these two tissues. Triacylglycerol and phosphatidylcholine molecular species distribution was analyzed through a developmental time series covering early seed lipid accumulation to seed maturity. The spatial patterning of lipid molecular species did not vary significantly during seed development. Data gathered using MALDI-MSI was verified through gas chromatography analysis of dissected seeds. The distinct lipid distribution profiles observed imply differential regulation of lipid metabolism between the different tissue types of the seed. Further understanding of this differential regulation will enhance efforts to improve oilseed rape productivity and quality.


Assuntos
Brassica napus/metabolismo , Lipídeos/biossíntese , Óleos de Plantas/metabolismo , Sementes/metabolismo , Análise Espaço-Temporal , Cromatografia Gasosa , Cotilédone/metabolismo , Ácido Linoleico/análise , Lipídeos/química , Espectroscopia de Ressonância Magnética , Ácidos Oleicos/análise , Ácido Palmítico/análise , Fosfatidilcolinas/biossíntese , Fosfatidilcolinas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo , Triglicerídeos/biossíntese , Triglicerídeos/química
6.
J Exp Bot ; 69(20): 4897-4906, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30032291

RESUMO

The bundle sheath provides a conduit linking veins and mesophyll cells. In the C3 plant Arabidopsis thaliana, it also plays important roles in oxidative stress and sulphur metabolism. However, the mechanisms responsible for the patterns of gene expression that underpin these metabolic specializations are poorly understood. Here, we used the Arabidopsis SULTR2;2 gene as a model to better understand mechanisms that restrict expression to the bundle sheath. Deletion analysis indicated that the SULTR2;2 promoter contains a short region necessary for expression in the bundle sheath and veins. This sequence acts as a positive regulator and is tolerant to multiple consecutive deletions indicating considerable redundancy in the cis-elements involved. It is highly conserved in SULTR2;2 genes of the Brassicaceae and is functional in the distantly related C4 species Flaveria bidentis that belongs to the Asteraceae. We conclude that expression of SULTR2;2 in the bundle sheath and veins is underpinned by a highly redundant sequence that likely represents an ancient and conserved mechanism found in families as diverse as the Asteraceae and Brassicaceae.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Feixe Vascular de Plantas/metabolismo , Arabidopsis/metabolismo , Sequência de Bases , Alinhamento de Sequência
8.
Plant Physiol ; 165(1): 62-75, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24676859

RESUMO

Leaves of almost all C4 lineages separate the reactions of photosynthesis into the mesophyll (M) and bundle sheath (BS). The extent to which messenger RNA profiles of M and BS cells from independent C4 lineages resemble each other is not known. To address this, we conducted deep sequencing of RNA isolated from the M and BS of Setaria viridis and compared these data with publicly available information from maize (Zea mays). This revealed a high correlation (r=0.89) between the relative abundance of transcripts encoding proteins of the core C4 pathway in M and BS cells in these species, indicating significant convergence in transcript accumulation in these evolutionarily independent C4 lineages. We also found that the vast majority of genes encoding proteins of the C4 cycle in S. viridis are syntenic to homologs used by maize. In both lineages, 122 and 212 homologous transcription factors were preferentially expressed in the M and BS, respectively. Sixteen shared regulators of chloroplast biogenesis were identified, 14 of which were syntenic homologs in maize and S. viridis. In sorghum (Sorghum bicolor), a third C4 grass, we found that 82% of these trans-factors were also differentially expressed in either M or BS cells. Taken together, these data provide, to our knowledge, the first quantification of convergence in transcript abundance in the M and BS cells from independent lineages of C4 grasses. Furthermore, the repeated recruitment of syntenic homologs from large gene families strongly implies that parallel evolution of both structural genes and trans-factors underpins the polyphyletic evolution of this highly complex trait in the monocotyledons.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Setaria (Planta)/citologia , Setaria (Planta)/genética , Zea mays/citologia , Zea mays/genética , Sequenciamento de Nucleotídeos em Larga Escala , Células do Mesofilo/citologia , Células do Mesofilo/metabolismo , Modelos Biológicos , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo , Sorghum/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
9.
J Exp Bot ; 63(3): 1381-90, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22143916

RESUMO

The molecular mechanisms governing PEPC expression in maize remain to be fully defined. Differential methylation of a region in the PEPC promoter has been shown to correlate with transcript accumulation, however, to date, investigations into the role of DNA methylation in maize PEPC expression have relied on the use of methylation-sensitive restriction enzymes. Bisulphite sequencing was used here to provide a single-base resolution methylation map of the maize PEPC promoter. It is shown that four cytosine residues in the PEPC promoter are heavily methylated in maize root tissue. In leaves, de-methylation of these cytosines is dependent on illumination and is coincident with elevated PEPC expression. Furthermore, light-regulated de-methylation of these cytosines occurs only in mesophyll cells. No methylation was discovered in the 0.6 kb promoter required for mesophyll-specific expression indicating that cytosine methylation is not required to direct the cell-specificity of PEPC expression. This raises interesting questions regarding the function of the cell-specific cytosine de-methylation observed in the upstream region of the PEPC promoter.


Assuntos
Fosfoenolpiruvato Carboxilase/genética , Regiões Promotoras Genéticas/genética , Zea mays/enzimologia , Zea mays/genética , Metilação de DNA/genética
10.
Sci Rep ; 12(1): 3352, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233071

RESUMO

Oilseed rape (Brassica napus) is an important crop that is cultivated for the oil (mainly triacylglycerol; TAG) it produces in its seeds. TAG synthesis is controlled mainly by key enzymes in the Kennedy pathway, such as glycerol 3-phosphate acyltransferase (GPAT), lysophosphatidate acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT) but can also be produced from phosphoglycerides such as phosphatidylcholine (PC) by the activity of the enzyme phospholipid: diacylglycerol acyltransferase (PDAT). To evaluate the potential for these enzymes to alter oil yields or composition, we analysed transgenic B. napus lines which overexpressed GPAT, LPAT or PDAT using heterologous transgenes from Arabidopsis and Nasturtium and examined lipid profiles and changes in gene expression in these lines compared to WT. Distinct changes in PC and TAG abundance and spatial distribution in embryonic tissues were observed in some of the transgenic lines, together with altered expression of genes involved generally in acyl-lipid metabolism. Overall our results show that up-regulation of these key enzymes differentially affects lipid composition and distribution as well as lipid-associated gene expression, providing important information which could be used to improve crop properties by metabolic engineering.


Assuntos
Arabidopsis , Brassica napus , Aciltransferases/genética , Aciltransferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Expressão Gênica , Metabolismo dos Lipídeos/genética , Sementes/genética , Sementes/metabolismo , Triglicerídeos/metabolismo
11.
J Exp Bot ; 62(9): 3001-10, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21335436

RESUMO

Every day almost one billion people suffer from chronic hunger, and the situation is expected to deteriorate with a projected population growth to 9 billion worldwide by 2050. In order to provide adequate nutrition into the future, rice yields in Asia need to increase by 60%, a change that may be achieved by introduction of the C(4) photosynthetic cycle into rice. The international C(4) Rice Consortium was founded in order to test the feasibility of installing the C(4) engine into rice. This review provides an update on two of the many approaches employed by the C(4) Rice Consortium: namely, metabolic C(4) engineering and identification of determinants of leaf anatomy by mutant screens. The aim of the metabolic C(4) engineering approach is to generate a two-celled C(4) shuttle in rice by expressing the classical enzymes of the NADP-ME C(4) cycle in a cell-appropriate manner. The aim is also to restrict RuBisCO and glycine decarboxylase expression to the bundle sheath (BS) cells of rice in a C(4)-like fashion by specifically down-regulating their expression in rice mesophyll (M) cells. In addition to the changes in biochemistry, two-celled C(4) species show a convergence in leaf anatomy that include increased vein density and reduced numbers of M cells between veins. By screening rice activation-tagged lines and loss-of-function sorghum mutants we endeavour to identify genes controlling these key traits.


Assuntos
Produtos Agrícolas/genética , Engenharia Genética/métodos , Oryza/genética , Fotossíntese/genética , Sorghum/genética , Zea mays/genética , Dióxido de Carbono/metabolismo , Produtos Agrícolas/enzimologia , Produtos Agrícolas/fisiologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicina Desidrogenase (Descarboxilante)/genética , Glicina Desidrogenase (Descarboxilante)/metabolismo , Mutação , Oryza/enzimologia , Oryza/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Sorghum/enzimologia , Sorghum/fisiologia , Zea mays/enzimologia , Zea mays/fisiologia
12.
Lipids ; 50(11): 1057-68, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26459450

RESUMO

Vegetable oils are an extremely important agricultural commodity. Their use has risen inexorably for the last 50 years and will undoubtedly be even more prevalent in the future. They have a role not only in foodstuffs but also as renewable chemicals. However, our understanding of their metabolism, and particularly its control, is incomplete. In this article we highlight current knowledge and its deficiencies. In particular, we focus on the important role that phosphatidylcholine plays in lipid accumulation and in influencing the quality of the vegetable oils produced.


Assuntos
Metabolismo dos Lipídeos , Óleos de Plantas/química , Triglicerídeos/química , Retículo Endoplasmático/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Fosfatidilcolinas/química , Óleos de Plantas/metabolismo , Triglicerídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa