Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(8): 102266, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35850308

RESUMO

Over 100 mutations in the rhodopsin gene have been linked to a spectrum of retinopathies that include retinitis pigmentosa and congenital stationary night blindness. Though most of these variants exhibit a loss of function, the molecular defects caused by these underlying mutations vary considerably. In this work, we utilize deep mutational scanning to quantitatively compare the plasma membrane expression of 123 known pathogenic rhodopsin variants in the presence and absence of the stabilizing cofactor 9-cis-retinal. We identify 69 retinopathy variants, including 20 previously uncharacterized variants, that exhibit diminished plasma membrane expression in HEK293T cells. Of these apparent class II variants, 67 exhibit a measurable increase in expression in the presence of 9-cis-retinal. However, the magnitude of the response to this molecule varies considerably across this spectrum of mutations. Evaluation of the observed shifts relative to thermodynamic estimates for the coupling between binding and folding suggests underlying differences in stability constrains the magnitude of their response to retinal. Nevertheless, estimates from computational modeling suggest that many of the least sensitive variants also directly compromise binding. Finally, we evaluate the functional properties of three previous uncharacterized, retinal-sensitive variants (ΔN73, S131P, and R135G) and show that two of these retain residual function in vitro. Together, our results provide a comprehensive experimental characterization of the proteostatic properties of retinopathy variants and their response to retinal.


Assuntos
Oftalmopatias Hereditárias , Rodopsina , Diterpenos/farmacologia , Resistência a Medicamentos/genética , Oftalmopatias Hereditárias/genética , Células HEK293 , Humanos , Mutação , Retinaldeído/farmacologia , Rodopsina/efeitos dos fármacos , Rodopsina/genética , Rodopsina/metabolismo
2.
Biophys J ; 121(14): 2712-2720, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35715957

RESUMO

Missense mutations that compromise the plasma membrane expression (PME) of integral membrane proteins are the root cause of numerous genetic diseases. Differentiation of this class of mutations from those that specifically modify the activity of the folded protein has proven useful for the development and targeting of precision therapeutics. Nevertheless, it remains challenging to predict the effects of mutations on the stability and/ or expression of membrane proteins. In this work, we utilize deep mutational scanning data to train a series of artificial neural networks to predict the PME of transmembrane domain variants of G protein-coupled receptors from structural and/ or evolutionary features. We show that our best-performing network, which we term the PME predictor, can recapitulate mutagenic trends within rhodopsin and can differentiate pathogenic transmembrane domain variants that cause it to misfold from those that compromise its signaling. This network also generates statistically significant predictions for the relative PME of transmembrane domain variants for another class A G protein-coupled receptor (ß2 adrenergic receptor) but not for an unrelated voltage-gated potassium channel (KCNQ1). Notably, our analyses of these networks suggest structural features alone are generally sufficient to recapitulate the observed mutagenic trends. Moreover, our findings imply that networks trained in this manner may be generalizable to proteins that share a common fold. Implications of our findings for the design of mechanistically specific genetic predictors are discussed.


Assuntos
Canal de Potássio KCNQ1 , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canal de Potássio KCNQ1/metabolismo , Mutagênese , Mutação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Rodopsina/química
3.
J Biol Chem ; 297(6): 101359, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756884

RESUMO

Membrane protein variants with diminished conformational stability often exhibit enhanced cellular expression at reduced growth temperatures. The expression of "temperature-sensitive" variants is also typically sensitive to corrector molecules that bind and stabilize the native conformation. There are many examples of temperature-sensitive rhodopsin variants, the misfolding of which is associated with the molecular basis of retinitis pigmentosa. In this work, we employ deep mutational scanning to compare the effects of reduced growth temperature and 9-cis-retinal, an investigational corrector, on the plasma membrane expression of 700 rhodopsin variants in HEK293T cells. We find that the change in expression at reduced growth temperatures correlates with the response to 9-cis-retinal among variants bearing mutations within a hydrophobic transmembrane domain (TM2). The most sensitive variants appear to disrupt a native helical kink within this transmembrane domain. By comparison, mutants that alter the structure of a polar transmembrane domain (TM7) exhibit weaker responses to temperature and retinal that are poorly correlated. Statistical analyses suggest that this observed insensitivity cannot be attributed to a single variable, but likely arises from the composite effects of mutations on the energetics of membrane integration, the stability of the native conformation, and the integrity of the retinal-binding pocket. Finally, we show that the characteristics of purified temperature- and retinal-sensitive variants suggest that the proteostatic effects of retinal may be manifested during translation and cotranslational folding. Together, our findings highlight several biophysical constraints that appear to influence the sensitivity of genetic variants to temperature and small-molecule correctors.


Assuntos
Mutação , Retinaldeído/metabolismo , Rodopsina/metabolismo , Células HEK293 , Humanos , Rodopsina/genética , Temperatura
4.
Biochemistry ; 60(11): 825-846, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33705117

RESUMO

Structure-based antibody and antigen design has advanced greatly in recent years, due not only to the increasing availability of experimentally determined structures but also to improved computational methods for both prediction and design. Constant improvements in performance within the Rosetta software suite for biomolecular modeling have given rise to a greater breadth of structure prediction, including docking and design application cases for antibody and antigen modeling. Here, we present an overview of current protocols for antibody and antigen modeling using Rosetta and exemplify those by detailed tutorials originally developed for a Rosetta workshop at Vanderbilt University. These tutorials cover antibody structure prediction, docking, and design and antigen design strategies, including the addition of glycans in Rosetta. We expect that these materials will allow novice users to apply Rosetta in their own projects for modeling antibodies and antigens.


Assuntos
Anticorpos/imunologia , Antígenos/imunologia , Modelos Biológicos , Polissacarídeos/imunologia
5.
Protein Sci ; 33(3): e4908, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38358133

RESUMO

Interactions between membrane proteins (MPs) and lipid bilayers are critical for many cellular functions. In the Rosetta molecular modeling suite, the implicit membrane energy function is based on a "slab" model, which represent the membrane as a flat bilayer. However, in nature membranes often have a curvature that is important for function and/or stability. Even more prevalent, in structural biology research MPs are reconstituted in model membrane systems such as micelles, bicelles, nanodiscs, or liposomes. Thus, we have modified the existing membrane energy potentials within the RosettaMP framework to allow users to model MPs in different membrane geometries. We show that these modifications can be utilized in core applications within Rosetta such as structure refinement, protein-protein docking, and protein design. For MP structures found in curved membranes, refining these structures in curved, implicit membranes produces higher quality models with structures closer to experimentally determined structures. For MP systems embedded in multiple membranes, representing both membranes results in more favorable scores compared to only representing one of the membranes. Modeling MPs in geometries mimicking the membrane model system used in structure determination can improve model quality and model discrimination.


Assuntos
Lipossomos , Proteínas de Membrana , Proteínas de Membrana/química , Bicamadas Lipídicas/química , Modelos Moleculares , Micelas
6.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37662415

RESUMO

Many membrane proteins are prone to misfolding, which compromises their functional expression at the plasma membrane. This is particularly true for the mammalian gonadotropin-releasing hormone receptor GPCRs (GnRHR). We recently demonstrated that evolutionary GnRHR modifications appear to have coincided with adaptive changes in cotranslational folding efficiency. Though protein stability is known to shape evolution, it is unclear how cotranslational folding constraints modulate the synergistic, epistatic interactions between mutations. We therefore compared the pairwise interactions formed by mutations that disrupt the membrane topology (V276T) or tertiary structure (W107A) of GnRHR. Using deep mutational scanning, we evaluated how the plasma membrane expression of these variants is modified by hundreds of secondary mutations. An analysis of 251 mutants in three genetic backgrounds reveals that V276T and W107A form distinct epistatic interactions that depend on both the severity and the mechanism of destabilization. V276T forms predominantly negative epistatic interactions with destabilizing mutations in soluble loops. In contrast, W107A forms positive interactions with mutations in both loops and transmembrane domains that reflect the diminishing impacts of the destabilizing mutations in variants that are already unstable. These findings reveal how epistasis is remodeled by conformational defects in membrane proteins and in unstable proteins more generally.

7.
Elife ; 122024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39078397

RESUMO

Many membrane proteins are prone to misfolding, which compromises their functional expression at the plasma membrane. This is particularly true for the mammalian gonadotropin-releasing hormone receptor GPCRs (GnRHR). We recently demonstrated that evolutionary GnRHR modifications appear to have coincided with adaptive changes in cotranslational folding efficiency. Though protein stability is known to shape evolution, it is unclear how cotranslational folding constraints modulate the synergistic, epistatic interactions between mutations. We therefore compared the pairwise interactions formed by mutations that disrupt the membrane topology (V276T) or tertiary structure (W107A) of GnRHR. Using deep mutational scanning, we evaluated how the plasma membrane expression of these variants is modified by hundreds of secondary mutations. An analysis of 251 mutants in three genetic backgrounds reveals that V276T and W107A form distinct epistatic interactions that depend on both the severity and the mechanism of destabilization. V276T forms predominantly negative epistatic interactions with destabilizing mutations in soluble loops. In contrast, W107A forms positive interactions with mutations in both loops and transmembrane domains that reflect the diminishing impacts of the destabilizing mutations in variants that are already unstable. These findings reveal how epistasis is remodeled by conformational defects in membrane proteins and in unstable proteins more generally.


Assuntos
Epistasia Genética , Proteínas de Membrana , Dobramento de Proteína , Receptores LHRH , Receptores LHRH/genética , Receptores LHRH/metabolismo , Receptores LHRH/química , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Mutação , Estabilidade Proteica , Membrana Celular/metabolismo
8.
Sci Rep ; 13(1): 2224, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36754988

RESUMO

While much work has been done in the field of canine olfaction, there has been little exploration of hyposmia or anosmia. This is partly due to difficulties in reducing confounds like training history and environmental distraction. The current study describes a novel olfaction test using spontaneous search behavior in dogs to find a hidden food treat in a three-choice task with both light-phase and dark-phase conditions. The study was performed in 18 adult control dogs, 18 senior/geriatric dogs enrolled in a longitudinal aging study, and a single dog with severe nasal pathology. In the senior/geriatric and control groups, dogs performed with higher accuracy (p < 0.0001) and were less likely to show biased selection strategy (p < 0.01) in the dark-phase than light-phase. While senior/geriatric dogs performed above chance, they had lower accuracy in the dark-phase compared to controls (p = 0.036). Dogs who scored higher on an owner questionnaire of cognitive decline showed a positive correlation with performance in the dark-phase; performance on additional cognitive tests did not correlate with performance in the dark-phase. This task can be used to quantify canine olfaction using clearly defined endpoints and spontaneous behaviors thus making it feasible to compare between and within groups of pet dogs.


Assuntos
Alimentos , Olfato , Cães , Animais , Envelhecimento , Testes Neuropsicológicos
9.
Structure ; 31(6): 713-723.e3, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119820

RESUMO

In-frame deletion mutations can result in disease. The impact of these mutations on protein structure and subsequent functional changes remain understudied, partially due to the lack of comprehensive datasets including a structural readout. In addition, the recent breakthrough in structure prediction through deep learning demands an update of computational deletion mutation prediction. In this study, we deleted individually every residue of a small α-helical sterile alpha motif domain and investigated the structural and thermodynamic changes using 2D NMR spectroscopy and differential scanning fluorimetry. Then, we tested computational protocols to model and classify observed deletion mutants. We show a method using AlphaFold2 followed by RosettaRelax performs the best overall. In addition, a metric containing pLDDT values and Rosetta ΔΔG is most reliable in classifying tolerated deletion mutations. We further test this method on other datasets and show they hold for proteins known to harbor disease-causing deletion mutations.


Assuntos
Biologia Computacional , Proteínas , Proteínas/química , Mutação , Simulação por Computador , Deleção de Sequência , Espectroscopia de Ressonância Magnética
10.
Front Vet Sci ; 9: 1052193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686191

RESUMO

Introduction: The aim of this study was to evaluate the engagement of aging dogs with a cognitively challenging and potentially frustrating task (the impossible task). Based on previous observations, we predicted that dogs showing signs of cognitive impairment in other cognitive tests and owner-completed questionnaires would show reduced engagement with the task. Methods: In this task, dogs were shown a piece of food in a clear container that they could not open; time spent interacting with the container and the experimenter was measured. While the impossible task has not been used as a measure of frustration, the parameters of the test design creates a potential frustrate state, making this assessment appropriate. Thirty-two dogs enrolled in a longitudinal aging study participated in the study. Owners were asked to complete two cognitive dysfunction screening questionnaires (Canine Dementia Scale [CADES] and Canine Cognitive Dysfunction Rating Scale [CCDR]) as well a questionnaire assessing general frustration. Dogs participated in multiple measures of cognitive function as well the impossible task. Results: Latency to disengage from the impossible task was faster for dogs with higher total (more impaired) CADES (p = 0.02) and total CCDR (p = 0.04) scores. Latency to disengage also correlated with decreased performance in cognitive tests observing social cues (p = 0.01), working memory (p ≤ 0.001), spatial reasoning and reversal learning (p = 0.02), and sustained attention (p = 0.02). Discussion: The high correlation with several cognitive measures and the ease of administration of this test makes it a useful tool in evaluating canine cognitive dysfunction syndrome, however it is unclear if increased frustration or other cognitive processes are contributing to the observed changes.

11.
Biomolecules ; 12(3)2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35327663

RESUMO

Cystic fibrosis (CF) is a rare genetic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial anion channel expressed in several vital organs. Absence of functional CFTR results in imbalanced osmotic equilibrium and subsequent mucus build up in the lungs-which increases the risk of infection and eventually causes death. CFTR is an ATP-binding cassette (ABC) transporter family protein composed of two transmembrane domains (TMDs), two nucleotide binding domains (NBDs), and an unstructured regulatory domain. The most prevalent patient mutation is the deletion of F508 (F508del), making F508del CFTR the primary target for current FDA approved CF therapies. However, no experimental multi-domain F508del CFTR structure has been determined and few studies have modeled F508del using multi-domain WT CFTR structures. Here, we used cryo-EM density data and Rosetta comparative modeling (RosettaCM) to compare a F508del model with published experimental data on CFTR NBD1 thermodynamics. We then apply this modeling method to generate multi-domain WT and F508del CFTR structural models. These models demonstrate the destabilizing effects of F508del on NBD1 and the NBD1/TMD interface in both the inactive and active conformation of CFTR. Furthermore, we modeled F508del/R1070W and F508del bound to the CFTR corrector VX-809. Our models reveal the stabilizing effects of VX-809 on multi-domain models of F508del CFTR and pave the way for rational design of additional drugs that target F508del CFTR for treatment of CF.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Modelos Estruturais , Mutação , Domínios Proteicos
12.
Nat Commun ; 12(1): 6947, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845212

RESUMO

Each year vast international resources are wasted on irreproducible research. The scientific community has been slow to adopt standard software engineering practices, despite the increases in high-dimensional data, complexities of workflows, and computational environments. Here we show how scientific software applications can be created in a reproducible manner when simple design goals for reproducibility are met. We describe the implementation of a test server framework and 40 scientific benchmarks, covering numerous applications in Rosetta bio-macromolecular modeling. High performance computing cluster integration allows these benchmarks to run continuously and automatically. Detailed protocol captures are useful for developers and users of Rosetta and other macromolecular modeling tools. The framework and design concepts presented here are valuable for developers and users of any type of scientific software and for the scientific community to create reproducible methods. Specific examples highlight the utility of this framework, and the comprehensive documentation illustrates the ease of adding new tests in a matter of hours.


Assuntos
Substâncias Macromoleculares/química , Simulação de Acoplamento Molecular , Proteínas/química , Software/normas , Benchmarking , Sítios de Ligação , Humanos , Ligantes , Substâncias Macromoleculares/metabolismo , Ligação Proteica , Proteínas/metabolismo , Reprodutibilidade dos Testes
13.
Sci Rep ; 10(1): 22233, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335259

RESUMO

The study of companion (pet) dogs is an area of great translational potential, as they share a risk for many conditions that afflict humans. Among these are conditions that affect sleep, including chronic pain and cognitive dysfunction. Significant advancements have occurred in the ability to study sleep in dogs, including development of non-invasive polysomnography; however, basic understanding of dog sleep patterns remains poorly characterized. The purpose of this study was to establish baseline sleep-wake cycle and activity patterns using actigraphy and functional linear modeling (FLM), for healthy, adult companion dogs. Forty-two dogs were enrolled and wore activity monitors for 14 days. FLM demonstrated a bimodal pattern of activity with significant effects of sex, body mass, and age; the effect of age was particularly evident during the times of peak activity. This study demonstrated that FLM can be used to describe normal sleep-wake cycles of healthy adult dogs and the effects of physiologic traits on these patterns of activity. This foundation makes it possible to characterize deviations from normal patterns, including those associated with chronic pain and cognitive dysfunction syndrome. This can improve detection of these conditions in dogs, benefitting them and their potential as models for human disease.


Assuntos
Comportamento Animal , Modelos Biológicos , Sono , Vigília , Algoritmos , Animais , Cães , Sono/fisiologia , Vigília/fisiologia
14.
Elife ; 92020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33095155

RESUMO

The function of the voltage-gated KCNQ1 potassium channel is regulated by co-assembly with KCNE auxiliary subunits. KCNQ1-KCNE1 channels generate the slow delayed rectifier current, IKs, which contributes to the repolarization phase of the cardiac action potential. A three amino acid motif (F57-T58-L59, FTL) in KCNE1 is essential for slow activation of KCNQ1-KCNE1 channels. However, how this motif interacts with KCNQ1 to control its function is unknown. Combining computational modeling with electrophysiological studies, we developed structural models of the KCNQ1-KCNE1 complex that suggest how KCNE1 controls KCNQ1 activation. The FTL motif binds at a cleft between the voltage-sensing and pore domains and appears to affect the channel gate by an allosteric mechanism. Comparison with the KCNQ1-KCNE3 channel structure suggests a common transmembrane-binding mode for different KCNEs and illuminates how specific differences in the interaction of their triplet motifs determine the profound differences in KCNQ1 functional modulation by KCNE1 versus KCNE3.


Assuntos
Ativação do Canal Iônico/fisiologia , Canal de Potássio KCNQ1/genética , Potenciais da Membrana/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Células CHO , Cricetulus , Humanos , Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
15.
Sci Adv ; 6(10): eaay7505, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32181350

RESUMO

Membrane proteins must balance the sequence constraints associated with folding and function against the hydrophobicity required for solvation within the bilayer. We recently found the expression and maturation of rhodopsin are limited by the hydrophobicity of its seventh transmembrane domain (TM7), which contains polar residues that are essential for function. On the basis of these observations, we hypothesized that rhodopsin's expression should be less tolerant of mutations in TM7 relative to those within hydrophobic TM domains. To test this hypothesis, we used deep mutational scanning to compare the effects of 808 missense mutations on the plasma membrane expression of rhodopsin in HEK293T cells. Our results confirm that a higher proportion of mutations within TM7 (37%) decrease rhodopsin's plasma membrane expression relative to those within a hydrophobic TM domain (TM2, 25%). These results in conjunction with an evolutionary analysis suggest solvation energetics likely restricts the evolutionary sequence space of polar TM domains.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Rodopsina/química , Membrana Celular/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Mutação , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Solubilidade , Termodinâmica
16.
PLoS One ; 14(9): e0220415, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31518351

RESUMO

The voltage-gated potassium channel KCNQ1 (KV7.1) assembles with the KCNE1 accessory protein to generate the slow delayed rectifier current, IKS, which is critical for membrane repolarization as part of the cardiac action potential. Loss-of-function (LOF) mutations in KCNQ1 are the most common cause of congenital long QT syndrome (LQTS), type 1 LQTS, an inherited genetic predisposition to cardiac arrhythmia and sudden cardiac death. A detailed structural understanding of KCNQ1 is needed to elucidate the molecular basis for KCNQ1 LOF in disease and to enable structure-guided design of new anti-arrhythmic drugs. In this work, advanced structural models of human KCNQ1 in the resting/closed and activated/open states were developed by Rosetta homology modeling guided by newly available experimentally-based templates: X. leavis KCNQ1 and various resting voltage sensor structures. Using molecular dynamics (MD) simulations, the capacity of the models to describe experimentally established channel properties including state-dependent voltage sensor gating charge interactions and pore conformations, PIP2 binding sites, and voltage sensor-pore domain interactions were validated. Rosetta energy calculations were applied to assess the utility of each model in interpreting mutation-evoked KCNQ1 dysfunction by predicting the change in protein thermodynamic stability for 50 experimentally characterized KCNQ1 variants with mutations located in the voltage-sensing domain. Energetic destabilization was successfully predicted for folding-defective KCNQ1 LOF mutants whereas wild type-like mutants exhibited no significant energetic frustrations, which supports growing evidence that mutation-induced protein destabilization is an especially common cause of KCNQ1 dysfunction. The new KCNQ1 Rosetta models provide helpful tools in the study of the structural basis for KCNQ1 function and can be used to generate hypotheses to explain KCNQ1 dysfunction.


Assuntos
Canal de Potássio KCNQ1/química , Modelos Moleculares , Humanos , Ligação de Hidrogênio , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Lipídeos/química , Mutação com Perda de Função , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa