Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Brain ; 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39279645

RESUMO

Primary mitochondrial diseases (PMDs) are among the most common inherited neurological disorders. They are caused by pathogenic variants in mitochondrial or nuclear DNA that disrupt mitochondrial structure and/or function, leading to impaired oxidative phosphorylation (OXPHOS). One emerging subcategory of PMDs involves defective phospholipid (PL) metabolism. Cardiolipin (CL), the signature PL of mitochondria, resides primarily in the inner mitochondrial membrane, where it is biosynthesised and remodelled via multiple enzymes and is fundamental to several aspects of mitochondrial biology. Genes that contribute to CL biosynthesis have recently been linked with PMD. However, the pathophysiological mechanisms that underpin human CL-related PMDs are not fully characterised. Here, we report six individuals, from three independent families, harbouring biallelic variants in PTPMT1, a mitochondrial tyrosine phosphatase required for de novo CL biosynthesis. All patients presented with a complex, neonatal/infantile onset neurological and neurodevelopmental syndrome comprising developmental delay, microcephaly, facial dysmorphism, epilepsy, spasticity, cerebellar ataxia and nystagmus, sensorineural hearing loss, optic atrophy, and bulbar dysfunction. Brain MRI revealed a variable combination of corpus callosum thinning, cerebellar atrophy, and white matter changes. Using patient-derived fibroblasts and skeletal muscle tissue, combined with cellular rescue experiments, we characterise the molecular defects associated with mutant PTPMT1 and confirm the downstream pathogenic effects that loss of PTPMT1 has on mitochondrial structure and function. To further characterise the functional role of PTPMT1 in CL homeostasis, we established a zebrafish ptpmt1 knockout model associated with abnormalities in body size, developmental alterations, decreased total CL levels, and OXPHOS deficiency. Together, these data indicate that loss of PTPMT1 function is associated with a new autosomal recessive PMD caused by impaired CL metabolism, highlight the contribution of aberrant CL metabolism towards human disease, and emphasise the importance of normal CL homeostasis during neurodevelopment.

2.
Ann Neurol ; 89(6): 1240-1247, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33704825

RESUMO

A rapidly expanding catalog of neurogenetic disorders has encouraged a diagnostic shift towards early clinical whole exome sequencing (WES). Adult primary mitochondrial diseases (PMDs) frequently exhibit neurological manifestations that overlap with other nervous system disorders. However, mitochondrial DNA (mtDNA) is not routinely analyzed in standard clinical WES bioinformatic pipelines. We reanalyzed 11,424 exomes, enriched with neurological diseases, for pathogenic mtDNA variants. Twenty-four different mtDNA mutations were detected in 64 exomes, 11 of which were considered disease causing based on the associated clinical phenotypes. These findings highlight the diagnostic uplifts gained by analyzing mtDNA from WES data in neurological diseases. ANN NEUROL 2021;89:1240-1247.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Pré-Escolar , Humanos , Masculino , Pessoa de Meia-Idade , Sequenciamento do Exoma , Adulto Jovem
3.
Hum Mol Genet ; 28(16): 2711-2719, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31039582

RESUMO

Mitochondrial disorders are clinically and genetically heterogeneous and are associated with a variety of disease mechanisms. Defects of mitochondrial protein synthesis account for the largest subgroup of disorders manifesting with impaired respiratory chain capacity; yet, only a few have been linked to dysfunction in the protein components of the mitochondrial ribosomes. Here, we report a subject presenting with dyskinetic cerebral palsy and partial agenesis of the corpus callosum, while histochemical and biochemical analyses of skeletal muscle revealed signs of mitochondrial myopathy. Using exome sequencing, we identified a homozygous variant c.215C>T in MRPS25, which encodes for a structural component of the 28S small subunit of the mitochondrial ribosome (mS25). The variant segregated with the disease and substitutes a highly conserved proline residue with leucine (p.P72L) that, based on the high-resolution structure of the 28S ribosome, is predicted to compromise inter-protein contacts and destabilize the small subunit. Concordant with the in silico analysis, patient's fibroblasts showed decreased levels of MRPS25 and other components of the 28S subunit. Moreover, assembled 28S subunits were scarce in the fibroblasts with mutant mS25 leading to impaired mitochondrial translation and decreased levels of multiple respiratory chain subunits. Crucially, these abnormalities were rescued by transgenic expression of wild-type MRPS25 in the mutant fibroblasts. Collectively, our data demonstrate the pathogenicity of the p.P72L variant and identify MRPS25 mutations as a new cause of mitochondrial translation defect.


Assuntos
Mitocôndrias/genética , Encefalomiopatias Mitocondriais/genética , Proteínas Mitocondriais/genética , Mutação , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Adulto , Biomarcadores , Fibroblastos/metabolismo , Predisposição Genética para Doença , Homozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/metabolismo , Encefalomiopatias Mitocondriais/diagnóstico , Encefalomiopatias Mitocondriais/metabolismo , Modelos Biológicos , Linhagem , Fenótipo , Sequenciamento do Exoma
4.
Ann Neurol ; 86(2): 310-315, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31187502

RESUMO

Distinct clinical syndromes have been associated with pathogenic MT-ATP6 variants. In this cohort study, we identified 125 individuals (60 families) including 88 clinically affected individuals and 37 asymptomatic carriers. Thirty-one individuals presented with Leigh syndrome and 7 with neuropathy ataxia retinitis pigmentosa. The remaining 50 patients presented with variable nonsyndromic features including ataxia, neuropathy, and learning disability. We confirmed maternal inheritance in 39 families and demonstrated that tissue segregation patterns and phenotypic threshold are variant dependent. Our findings suggest that MT-ATP6-related mitochondrial DNA disease is best conceptualized as a mitochondrial disease spectrum disorder and should be routinely included in genetic ataxia and neuropathy gene panels. ANN NEUROL 2019;86:310-315.


Assuntos
Variação Genética/genética , Doenças Mitocondriais/epidemiologia , Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/diagnóstico , Reino Unido/epidemiologia , Adulto Jovem
5.
Pediatr Cardiol ; 41(7): 1402-1407, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32556486

RESUMO

Sternal wound infections (SWI) in delayed sternal closure (DSC) patients are a healthcare burden after congenital heart surgery. There are no guidelines specific for pediatric DSC patients to prevent this costly complication. The hypothesis was that the modifications to a bundled approach for DSC patients would decrease the SWI rate. For this prospective cohort study, DSC patients were postoperatively admitted to a pediatric cardiac care unit from February 2017 to January 2018. Using a modified protocol for prevention of SWI, the infection rates pre- and post-modified protocol were compared. The primary outcome measure was SWI. Secondary outcome measures were compliance with modifications. Retrospective review of cases in pre-protocol modification era from January 1, 2014 to December 31, 2016 showed 377 pediatric cardiopulmonary bypass cases and 39 (10.4%) underwent DSC. During the post-protocol modification era, there were 129 cardiopulmonary bypass cases and 17 (13%) DSC cases. The SWI rate in DSC were 7.7% and 0% for pre-intervention and post-intervention, respectively (p = 0.52). The Bayesian confidence interval with Jeffreys prior gives a 95% confidence interval of 1.5% to 18.3% for pre-intervention and 0 to 13.5% for post-intervention. Compliance with the protocol bundle during the post protocol era was 93-100%. Although preliminary results are not statistically significant due to cohort size, the economic burden and increased LOS for each SWI is clinically significant. The early results of reduced infections for DSC patients using a modified bundle approach appear promising. Continued study and a multicenter project would be beneficial.


Assuntos
Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Esternotomia/efeitos adversos , Infecção da Ferida Cirúrgica/prevenção & controle , Teorema de Bayes , Criança , Feminino , Humanos , Masculino , Pacotes de Assistência ao Paciente/métodos , Estudos Prospectivos , Melhoria de Qualidade , Estudos Retrospectivos , Infecção da Ferida Cirúrgica/etiologia
6.
Am J Hum Genet ; 98(4): 597-614, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27040688

RESUMO

Abnormal protein aggregation is observed in an expanding number of neurodegenerative diseases. Here, we describe a mechanism for intracellular toxic protein aggregation induced by an unusual mutation event in families affected by axonal neuropathy. These families carry distinct frameshift variants in NEFH (neurofilament heavy), leading to a loss of the terminating codon and translation of the 3' UTR into an extra 40 amino acids. In silico aggregation prediction suggested the terminal 20 residues of the altered NEFH to be amyloidogenic, which we confirmed experimentally by serial deletion analysis. The presence of this amyloidogenic motif fused to NEFH caused prominent and toxic protein aggregates in transfected cells and disrupted motor neurons in zebrafish. We identified a similar aggregation-inducing mechanism in NEFL (neurofilament light) and FUS (fused in sarcoma), in which mutations are known to cause aggregation in Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis, respectively. In summary, we present a protein-aggregation-triggering mechanism that should be taken into consideration during the evaluation of stop-loss variants.


Assuntos
Regiões 3' não Traduzidas/genética , Axônios/patologia , Filamentos Intermediários/genética , Neurônios Motores/patologia , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Animais , Linhagem Celular , Doença de Charcot-Marie-Tooth/genética , Mutação da Fase de Leitura , Humanos , Filamentos Intermediários/metabolismo , Camundongos , Dados de Sequência Molecular , Neurônios Motores/metabolismo , Mutação , Linhagem , Peixe-Zebra/genética
7.
Eur Radiol ; 26(1): 130-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25994195

RESUMO

OBJECTIVES: Conventional and quantitative MRI was performed in patients with chronic progressive external ophthalmoplegia (CPEO), a common manifestation of mitochondrial disease, to characterise MRI findings in the extra-ocular muscles (EOMs) and investigate whether quantitative MRI provides clinically relevant measures of disease. METHODS: Patients with CPEO due to single mitochondrial DNA deletions were compared with controls. Range of eye movement (ROEM) measurements, peri-orbital 3 T MRI T1-weighted (T1w) and short-tau-inversion-recovery (STIR) images, and T2 relaxation time maps were obtained. Blinded observers graded muscle atrophy and T1w/STIR hyperintensity. Cross-sectional areas and EOM mean T2s were recorded and correlated with clinical parameters. RESULTS: Nine patients and nine healthy controls were examined. Patients had reduced ROEM (patients 13.3°, controls 49.3°, p < 0.001), greater mean atrophy score and increased T1w hyperintensities. EOM mean cross-sectional area was 43 % of controls and mean T2s were prolonged (patients 75.6 ± 7.0 ms, controls 55.2 ± 4.1 ms, p < 0.001). ROEM correlated negatively with EOM T2 (rho = -0.89, p < 0.01), whilst cross-sectional area failed to correlate with any clinical measures. CONCLUSIONS: MRI demonstrates EOM atrophy, characteristic signal changes and prolonged T2 in CPEO. Correlation between elevated EOM T2 and ROEM impairment represents a potential measure of disease severity that warrants further evaluation. KEY POINTS: Chronic progressive external ophthalmoplegia is a common clinical manifestation of mitochondrial disease. • Existing extra-ocular muscle MRI data in CPEO reports variable radiological findings. MRI confirmed EOM atrophy and characteristic signal changes in CPEO. EOM T2 was significantly elevated in CPEO and correlated negatively with ocular movements. EOM T2 represents a potential quantitative measure of disease severity in CPEO.


Assuntos
Imageamento por Ressonância Magnética/métodos , Doenças Mitocondriais/complicações , Músculos Oculomotores/patologia , Oftalmoplegia Externa Progressiva Crônica/diagnóstico , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Oftalmoplegia Externa Progressiva Crônica/etiologia , Oftalmoplegia Externa Progressiva Crônica/genética , Adulto Jovem
8.
J Surg Res ; 200(1): 21-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26237992

RESUMO

BACKGROUND: The administration of blood products during pediatric cardiac surgery is common. We sought to determine if thromboelastography (TEG) is a cost-effective tool to reduce blood product transfusion in open pediatric cardiac surgery. MATERIALS AND METHODS: A retrospective case-control study was undertaken for 150 pediatric cardiac patients requiring cardiopulmonary bypass from January 2010-May 2012, in a University-affiliated pediatric hospital. Fifty sequential patients operated on when TEG was used were compared with 100 control patients before TEG availability. Groups were matched 2:1 for age and risk adjustment for congenital heart surgery score. Blood product utilization was compared between groups, as were outcomes metrics such as postoperative complications, length of stay, and hospital costs of transfusions. RESULTS: Demographic variables, risk adjustment for congenital heart surgery score classifications, and cardiopulmonary bypass times were similar between groups. Red cell and plasma transfusion were comparable between groups. TEG patients saw a substantial reduction in the administration of platelet (1 versus 2.2 U; P < 0.0001) and cryoprecipitate (0.7 versus 1.7 U; P < 0.0001) transfusions. A greater than 50% reductions in hospital costs of platelet ($595 versus $1309) and cryoprecipitate ($39 versus $94) transfusions were observed in the TEG group. Mortality, length of stay, ventilator requirements, postoperative bleeding, and thrombotic events were equivalent. CONCLUSIONS: Intraoperative TEG use reduced platelet and cryoprecipitate transfusions without an increase in postoperative complications. TEG is a cost-effective method to direct blood product replacement.


Assuntos
Transfusão de Componentes Sanguíneos/estatística & dados numéricos , Procedimentos Cirúrgicos Cardíacos/economia , Redução de Custos/estatística & dados numéricos , Análise Custo-Benefício , Custos Hospitalares/estatística & dados numéricos , Cuidados Intraoperatórios/métodos , Tromboelastografia/economia , Adolescente , Transfusão de Componentes Sanguíneos/economia , Ponte Cardiopulmonar , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Cuidados Intraoperatórios/economia , Tempo de Internação/economia , Tempo de Internação/estatística & dados numéricos , Masculino , Complicações Pós-Operatórias/economia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Prevalência , Estudos Retrospectivos , Texas , Adulto Jovem
10.
J Inherit Metab Dis ; 38(3): 445-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25352051

RESUMO

BACKGROUND: Single large-scale mitochondrial DNA (mtDNA) deletions (SLSMDs) are amongst the most frequently diagnosed mtDNA disorders in childhood, yet their natural history remains poorly understood. We report the natural history of a large multicentre cohort of such children. METHODS: We reviewed case notes from three different UK centres to determine the clinical course of 34 patients (16 female, 18 male) with childhood-onset mitochondrial disease caused by SLSMDs. Kaplan-Meier analysis was used to compare survival of patients presenting with haematological features (Pearson syndrome) and those with nonhaematological presentations. RESULTS: The most frequent initial presentation was with isolated ptosis (16/34, 47%). Eleven (32%) patients presented with transfusion-dependent anaemia soon after birth and were diagnosed with Pearson syndrome, whilst ten were classified as having Kearns-Sayre syndrome, three as having progressive external ophthalmoplegia (PEO) and seven as having PEO-plus. Three patients did not conform to any specific mitochondrial syndrome. The most frequently affected organ during the disease course was the kidney, with documented tubular or glomerular dysfunction in 17 of 20 (85%) cases who had detailed investigations. SLSMDs were present in blood and/or urine cells in all cases tested, indicating that muscle biopsy is not necessary for diagnosis in the paediatric age range. Kaplan-Meier survival analysis revealed significantly worse mortality in patients with Pearson syndrome compared with the rest of the cohort. CONCLUSIONS: Mitochondrial disease caused by SLSMDs is clinically heterogeneous, and not all cases conform to a classical mitochondrial syndrome. Multisystem disease is the norm, with anaemia, renal impairment and endocrine disturbance being the most frequent extraneurological features. SLSMDs should be considered in the differential diagnosis of all children presenting with ptosis.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Blefaroptose/genética , DNA Mitocondrial/genética , Síndrome de Kearns-Sayre/genética , Erros Inatos do Metabolismo Lipídico/genética , Doenças Mitocondriais/genética , Músculo Esquelético/patologia , Doenças Musculares/genética , Deleção de Sequência/genética , Acil-CoA Desidrogenase de Cadeia Longa/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Síndrome Congênita de Insuficiência da Medula Óssea , Feminino , Humanos , Lactente , Recém-Nascido , Estimativa de Kaplan-Meier , Masculino , Adulto Jovem
12.
J Neurol Neurosurg Psychiatry ; 84(1): 107-10, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22933815

RESUMO

BACKGROUND: The myopathy associated with mutations in the nuclear-encoded mitochondrial DNA maintenance gene POLG, coding for the catalytic subunit of DNA polymerase, is typically proximal with early ophthalmoplegia. RESULTS: We report two unrelated patients in whom a distal, mainly upper limb, myopathy was the predominant and early clinical feature. One patient also suffered with marked cachexia. DNA genomic sequence analysis identified novel dominant heterozygous missense POLG mutations (Leu896Arg and Tyr951His) located within the conserved catalytic polymerase domain of the protein in both cases. CONCLUSIONS: Distal upper limb myopathy/cachexia is not previously described with dominant POLG mutations and our observations further highlight the diverse clinical spectrum of POLG-related mitochondrial disorders. These data indicate that dominant POLG mutations should be considered in the differential diagnosis of distal upper limb predominant myopathy.


Assuntos
Caquexia/genética , DNA Mitocondrial/genética , DNA Polimerase Dirigida por DNA/genética , Miopatias Distais/genética , Mutação de Sentido Incorreto/genética , Adulto , Caquexia/complicações , DNA Polimerase gama , Miopatias Distais/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Análise de Sequência de DNA
13.
J Pediatr Health Care ; 37(6): 706-709, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37589627

RESUMO

In 2015 the United Nations created the Agenda for Sustainable Development and a list of 17 sustainable development goals (SDGs) for 2030. This year is the halfway mark toward meeting the goals, and the results reported by the World Health Organization in 2023 are not as positive as hoped, as progress has stagnated. The third SDG primarily focuses on the health and well-being of all ages to prevent unavoidable deaths in children aged < 5 years. Pediatric nurse practitioners are uniquely positioned to support programs building toward the health and well-being of children. Becoming aware of opportunities will help pediatric nurse practitioners use their voices toward success in meeting the SDGs.


Assuntos
Saúde Global , Desenvolvimento Sustentável , Humanos , Criança , Organização Mundial da Saúde , Nações Unidas
14.
Expert Rev Mol Diagn ; 23(9): 797-814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37642407

RESUMO

INTRODUCTION: Primary mitochondrial diseases (PMDs) comprise a large and heterogeneous group of genetic diseases that result from pathogenic variants in either nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Widespread adoption of next-generation sequencing (NGS) has improved the efficiency and accuracy of mtDNA diagnoses; however, several challenges remain. AREAS COVERED: In this review, we briefly summarize the current state of the art in molecular diagnostics for mtDNA and consider the implications of improved whole genome sequencing (WGS), bioinformatic techniques, and the adoption of long-read sequencing, for PMD diagnostics. EXPERT OPINION: We anticipate that the application of PCR-free WGS from blood DNA will increase in diagnostic laboratories, while for adults with myopathic presentations, WGS from muscle DNA may become more widespread. Improved bioinformatic strategies will enhance WGS data interrogation, with more accurate delineation of mtDNA and NUMTs (nuclear mitochondrial DNA segments) in WGS data, superior coverage uniformity, indirect measurement of mtDNA copy number, and more accurate interpretation of heteroplasmic large-scale rearrangements (LSRs). Separately, the adoption of diagnostic long-read sequencing could offer greater resolution of complex LSRs and the opportunity to phase heteroplasmic variants.


Mitochondria generate our bodies' energy, and they contain their own circular DNA molecules. Changes in this mitochondrial DNA can cause a wide range of genetic diseases. Improved computer processing of the sequence of this DNA and new techniques that can read the full DNA sequence in one experiment may enhance our ability to understand these genetic variants.


Assuntos
Genoma Mitocondrial , Doenças Mitocondriais , Humanos , DNA Mitocondrial/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Análise de Sequência de DNA/métodos , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala/métodos
15.
Eur J Hum Genet ; 31(2): 148-163, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36513735

RESUMO

Primary mitochondrial disease describes a diverse group of neuro-metabolic disorders characterised by impaired oxidative phosphorylation. Diagnosis is challenging; >350 genes, both nuclear and mitochondrial DNA (mtDNA) encoded, are known to cause mitochondrial disease, leading to all possible inheritance patterns and further complicated by heteroplasmy of the multicopy mitochondrial genome. Technological advances, particularly next-generation sequencing, have driven a shift in diagnostic practice from 'biopsy first' to genome-wide analyses of blood and/or urine DNA. This has led to the need for a reference framework for laboratories involved in mitochondrial genetic testing to facilitate a consistent high-quality service. In the United Kingdom, consensus guidelines have been prepared by a working group of Clinical Scientists from the NHS Highly Specialised Service followed by national laboratory consultation. These guidelines summarise current recommended technologies and methodologies for the analysis of mtDNA and nuclear-encoded genes in patients with suspected mitochondrial disease. Genetic testing strategies for diagnosis, family testing and reproductive options including prenatal diagnosis are outlined. Importantly, recommendations for the minimum levels of mtDNA testing for the most common referral reasons are included, as well as guidance on appropriate referrals and information on the minimal appropriate gene content of panels when analysing nuclear mitochondrial genes. Finally, variant interpretation and recommendations for reporting of results are discussed, focussing particularly on the challenges of interpreting and reporting mtDNA variants.


Assuntos
Genoma Mitocondrial , Doenças Mitocondriais , Gravidez , Feminino , Humanos , Estudo de Associação Genômica Ampla , Doenças Mitocondriais/genética , DNA Mitocondrial/genética , Testes Genéticos/métodos , Mitocôndrias/genética
16.
Brain ; 134(Pt 10): 2982-3010, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21719429

RESUMO

Dravet syndrome is an epilepsy syndrome of infantile onset, frequently caused by SCN1A mutations or deletions. Its prevalence, long-term evolution in adults and neuropathology are not well known. We identified a series of 22 adult patients, including three adult post-mortem cases with Dravet syndrome. For all patients, we reviewed the clinical history, seizure types and frequency, antiepileptic drugs, cognitive, social and functional outcome and results of investigations. A systematic neuropathology study was performed, with post-mortem material from three adult cases with Dravet syndrome, in comparison with controls and a range of relevant paediatric tissue. Twenty-two adults with Dravet syndrome, 10 female, were included, median age 39 years (range 20-66). SCN1A structural variation was found in 60% of the adult Dravet patients tested, including one post-mortem case with DNA extracted from brain tissue. Novel mutations were described for 11 adult patients; one patient had three SCN1A mutations. Features of Dravet syndrome in adulthood include multiple seizure types despite polytherapy, and age-dependent evolution in seizure semiology and electroencephalographic pattern. Fever sensitivity persisted through adulthood in 11 cases. Neurological decline occurred in adulthood with cognitive and motor deterioration. Dysphagia may develop in or after the fourth decade of life, leading to significant morbidity, or death. The correct diagnosis at an older age made an impact at several levels. Treatment changes improved seizure control even after years of drug resistance in all three cases with sufficient follow-up after drug changes were instituted; better control led to significant improvement in cognitive performance and quality of life in adulthood in two cases. There was no histopathological hallmark feature of Dravet syndrome in this series. Strikingly, there was remarkable preservation of neurons and interneurons in the neocortex and hippocampi of Dravet adult post-mortem cases. Our study provides evidence that Dravet syndrome is at least in part an epileptic encephalopathy.


Assuntos
Encéfalo/patologia , Transtornos Cognitivos/patologia , Epilepsias Mioclônicas/patologia , Proteínas do Tecido Nervoso/genética , Canais de Sódio/genética , Adulto , Idoso , Encéfalo/fisiopatologia , Transtornos Cognitivos/genética , Transtornos Cognitivos/fisiopatologia , Progressão da Doença , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1 , Síndrome
17.
J Med Genet ; 48(9): 610-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21378381

RESUMO

BACKGROUND: Mutations in RRM2B encoding ribonucleotide reductase (RNR) p53R2 subunit usually cause paediatric-onset mitochondrial disease associated with mitochondrial DNA (mtDNA) depletion. The importance of RNR dysfunction in adult mitochondrial disease is unclear. OBJECTIVE: To report the RRM2B mutation frequency in adults with multiple mtDNA deletions and examine RNR assembly in a patient with Kearns-Sayre syndrome (KSS) caused by two novel RRM2B mutations. METHODS: 50 adult patients with multiple mtDNA deletions in skeletal muscle were studied. DNA sequencing of RRM2B was performed in patients without mutations in mtDNA maintenance genes POLG and C10orf2. RNR protein was studied using western blot and Blue-native polyacrylamide gel electrophoresis (BN-PAGE). RESULTS: Four per cent (two unrelated cases) of this adult cohort harboured RRM2B mutations. Patient 1 had KSS and two novel missense mutations: c.122G→A; p.Arg41Gln and c.391G→A; p.Glu131Lys. BN-PAGE demonstrated reduced heterotetrameric R1/p53R2 RNR levels compared with controls, despite normal steady-state p53R2 levels on western blot, suggesting failed assembly of functional RNR as a potential disease mechanism. Patient 2 had late-onset progressive external ophthalmoplegia and fatigue. A heterozygous deletion c.253_255delGAG; p.Glu85del was identified. Muscle histology in both cases showed significant numbers of necrotic muscle fibres, possibly indicating enhanced apoptotic cell death. CONCLUSION: These data indicate that 4% of adult mitochondrial disease with multiple deletions is caused by RNR dysfunction. KSS has not previously been linked to a nuclear gene defect. Evidence that disease pathogenesis may be caused by defective RNR assembly is given. RRM2B screening should be considered early in the differential diagnosis of adults with multiple mtDNA deletions.


Assuntos
Proteínas de Ciclo Celular/genética , Síndrome de Kearns-Sayre/genética , Ribonucleotídeo Redutases/genética , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Estudos de Coortes , Análise Mutacional de DNA , Deleção de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Mutação , Ribonucleotídeo Redutases/metabolismo
18.
Nat Commun ; 13(1): 6324, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344503

RESUMO

Diagnostic whole genome sequencing (WGS) is increasingly used in rare diseases. However, standard, semi-automated WGS analysis may overlook diagnoses in complex disorders. Here, we show that specialist multidisciplinary analysis of WGS, following an initial 'no primary findings' (NPF) report, improves diagnostic rates and alters management. We undertook WGS in 102 adults with diagnostically challenging primary mitochondrial disease phenotypes. NPF cases were reviewed by a genomic medicine team, thus enabling bespoke informatic approaches, co-ordinated phenotypic validation, and functional work. We enhanced the diagnostic rate from 16.7% to 31.4%, with management implications for all new diagnoses, and detected strong candidate disease-causing variants in a further 3.9% of patients. This approach presents a standardised model of care that supports mainstream clinicians and enhances diagnostic equity for complex disorders, thereby facilitating access to the potential benefits of genomic healthcare. This research was made possible through access to the data and findings generated by the 100,000 Genomes Project: http://www.genomicsengland.co.uk .


Assuntos
Genoma , Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma , Fenótipo
19.
Genes (Basel) ; 12(10)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681037

RESUMO

Mitochondrial stroke-like episodes (SLEs) are a hallmark of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). They should be suspected in anyone with an acute/subacute onset of focal neurological symptoms at any age and are usually driven by seizures. Suggestive features of an underlying mitochondrial pathology include evolving MRI lesions, often originating within the posterior brain regions, the presence of multisystemic involvement, including diabetes, deafness, or cardiomyopathy, and a positive family history. The diagnosis of MELAS has important implications for those affected and their relatives, given it enables early initiation of appropriate treatment and genetic counselling. However, the diagnosis is frequently challenging, particularly during the acute phase of an event. We describe four cases of mitochondrial strokes to highlight the considerable overlap that exists with other neurological disorders, including viral and autoimmune encephalitis, ischemic stroke, and central nervous system (CNS) vasculitis, and discuss the clinical, laboratory, and imaging features that can help distinguish MELAS from these differential diagnoses.


Assuntos
Diagnóstico Diferencial , Síndrome MELAS/diagnóstico , Encefalomiopatias Mitocondriais/diagnóstico , Vasculite do Sistema Nervoso Central/diagnóstico , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Cardiomiopatias/diagnóstico , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/fisiopatologia , Sistema Nervoso Central/diagnóstico por imagem , Sistema Nervoso Central/patologia , Surdez/diagnóstico , Surdez/fisiopatologia , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/fisiopatologia , Feminino , Humanos , Síndrome MELAS/diagnóstico por imagem , Síndrome MELAS/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Encefalomiopatias Mitocondriais/diagnóstico por imagem , Encefalomiopatias Mitocondriais/fisiopatologia , Vasculite do Sistema Nervoso Central/diagnóstico por imagem , Vasculite do Sistema Nervoso Central/fisiopatologia
20.
Neurol Genet ; 7(3): e597, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34056100

RESUMO

OBJECTIVE: We hypothesized that novel investigative pathways are needed to decrease diagnostic odysseys in pediatric mitochondrial disease and sought to determine the utility of clinical exome sequencing in a large cohort with suspected mitochondrial disease and to explore whether any of the traditional indicators of mitochondrial disease predict a confirmed genetic diagnosis. METHODS: We investigated a cohort of 85 pediatric patients using clinical exome sequencing and compared the results with the outcome of traditional diagnostic tests, including biochemical testing of routine parameters (lactate, alanine, and proline), neuroimaging, and muscle biopsy with histology and respiratory chain enzyme activity studies. RESULTS: We established a genetic diagnosis in 36.5% of the cohort and report 20 novel disease-causing variants (1 mitochondrial DNA). Counterintuitively, routine biochemical markers were more predictive of mitochondrial disease than more invasive and elaborate muscle studies. CONCLUSIONS: We propose using biochemical markers to support the clinical suspicion of mitochondrial disease and then apply first-line clinical exome sequencing to identify a definite diagnosis. Muscle biopsy studies should only be used in clinically urgent situations or to confirm an inconclusive genetic result. CLASSIFICATION OF EVIDENCE: This is a Class II diagnostic accuracy study showing that the combination of CSF and plasma biochemical tests plus neuroimaging could predict the presence or absence of exome sequencing confirmed mitochondrial disorders.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa