Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 141(9): 2756-60, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-26902487

RESUMO

Divalent mercuric (Hg(2+)) ion and monomethyl mercury (CH3Hg(+)) are two forms of mercury that are known to be highly toxic to humans. In this work, we present a highly selective, sensitive and label-free chemiresistive biosensor for the detection of both, Hg(2+) and CH3Hg(+) ions using DNA-functionalized single-walled carbon nanotubes (SWNTs). The SWNTs were functionalized with the capture oligonucleotide, polyT, using a linker molecule. The polyT was hybridized with polyA to form a polyT:polyA duplex. Upon exposure to mercury ions, the polyT:polyA duplex dehybridizes and a T-Hg(2+)-T duplex is formed. This structure switch leads to the release of polyA from the SWNT surface and correspondingly a change in the resistance of the chemiresistive biosensor is observed, which is used to quantify the mercury ion concentration. The biosensor showed a wide dynamic range of 0.5 to 100 nM for the detection of CH3Hg(+) ions in buffer solution with a sensitivity of 28.34% per log (nM) of CH3Hg(+). Finally, real world application of the biosensor was demonstrated by the detection of Hg(2+) and CH3Hg(+) ions in simulated saliva samples spiked with a known concentration of mercury ions.


Assuntos
Técnicas Biossensoriais/métodos , Mercúrio/análise , Nanotubos de Carbono/química , Oligonucleotídeos/química , Saliva/química , Humanos
2.
Sci Total Environ ; 651(Pt 1): 1253-1260, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30360257

RESUMO

Associations with minerals can potentially augment soil organic carbon (SOC) stability by reducing the bioavailability and degradation of SOC. However, few studies have directly measured aerobic respiration of mineral-bound SOC. In this study, we investigated the microbial aerobic respiration and bioavailability of ferrihydrite-sorbed glucose (Fh-GLU) and ferrihydrite-sorbed formic acid (Fh-FA) by adding 13C-labeled compounds to a soil. During an 11-day incubation, 30.2% of free, non-Fh-sorbed glucose (GLU) and 61.8% of free formic acid (FA) were respired, whereas 4.2% and 27.9% of Fh-GLU and Fh-FA were respired, respectively. Our results demonstrated that Fh-bound GLU/FA had lower bioavailability compared to free organic compounds. Associations with Fh led to greater inhibition in the bioavailability of GLU than that for FA. The priming effects of added compounds on the respiration of native SOC were decreased by their association with Fh. Our results demonstrated that the bioavailability and priming effect of organic compounds depend on their interactions with minerals.

3.
Sci Total Environ ; 668: 216-223, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-30852198

RESUMO

Associations of organic carbon (OC) with iron (Fe) oxide minerals play an important role in regulating the stability of OC in soil environments. Knowledge about the fate and stability of Fe-OC complexes is impaired by the heterogeneity of OC. Additional biogeochemical variables in soil environments, such as redox conditions and microbes, further increase complexity in understanding the stability of mineral-associated soil OC. This study investigated the fate and stability of model organic compounds, including glucose (GL), glucosamine (GN), tyrosine (TN), benzoquinone (BQ), amylose (AM), and alginate (AL), complexed with an Fe oxide mineral, ferrihydrite (Fh), during microbial reduction. During a 25-d anaerobic incubation with Shewanella putrefaciens CN32, the reduction of Fe followed the order of Fh-BQ > Fh-GL > Fh-GN > Fh-TN > Fh-AL > Fh-AM. In terms of OC released during the anaerobic incubation, Fh-GN complexes released the highest amount of OC while Fh-AM complexes released the lowest. Organic carbon regulated the reduction of Fe by acting as an electron shuttle, affecting microbial activities, and associating with Fh. Benzoquinone had the highest electron accepting capacity, but potentially can inhibit microbial activity. These findings provide insights into the roles of different organic functional groups in regulating Fe reduction and the stability of Fh-bound OC under anaerobic conditions.


Assuntos
Compostos Férricos/metabolismo , Modelos Químicos , Compostos Orgânicos/metabolismo , Anaerobiose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa