Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Econ Entomol ; 107(2): 623-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24772542

RESUMO

The invasive fruit fly, Bactrocera invadens Drew, Tsuruta & White, is a highly polyphagous fruit pest that occurs predominantly in Africa yet has its origins in the Indian subcontinent. It is extremely morphologically and genetically similar to the Oriental fruit fly, Bactrocera dorsalis (Hendel); as such the specific relationship between these two species is unresolved. We assessed prezygotic compatibility between B. dorsalis and B. invadens using standardized field cage mating tests, which have proven effectiveness in tephritid cryptic species studies. These tests were followed by an assessment of postzygotic compatibility by examining egg viability, larval and pupal survival, and sex ratios of offspring produced from parental and subsequent F1 crosses to examine for hybrid breakdown as predicted under a two-species hypothesis. B. dorsalis was sourced from two countries (Pakistan and China), and each population was compared with B. invadens from its type locality of Kenya. B. invadens mated randomly with B. dorsalis from both localities, and there were generally high levels of hybrid viability and survival resulting from parental and F1 crosses. Furthermore, all but one hybrid cross resulted in equal sex ratios, with the single deviation in favor of males and contrary to expectations under Haldane's rule. These data support the hypothesis that B. dorsalis and B. invadens represent the same biological species, an outcome that poses significant implications for pest management and international trade for sub-Saharan Africa.


Assuntos
Comportamento Sexual Animal , Tephritidae/classificação , Tephritidae/fisiologia , Animais , China , Cruzamentos Genéticos , Controle de Insetos , Quênia , Larva/classificação , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Longevidade , Paquistão , Pupa/classificação , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Reprodução , Razão de Masculinidade , Tephritidae/genética , Tephritidae/crescimento & desenvolvimento
2.
J Econ Entomol ; 106(2): 695-707, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23786057

RESUMO

Bactrocera dorsalis (Hendel), Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, and Bactrocera carambolae Drew & Hancock are pest members within the B. dorsalis species complex of tropical fruit flies. The species status of these taxa is unclear and this confounds quarantine, pest management, and general research. Mating studies carried out under uniform experimental conditions are required as part of resolving their species limits. These four taxa were collected from the wild and established as laboratory cultures for which we subsequently determined levels of prezygotic compatibility, assessed by field cage mating trials for all pair-wise combinations. We demonstrate random mating among all pair-wise combinations involving B. dorsalis, B. papayae, and B. philippinensis. B. carambolae was relatively incompatible with each of these species as evidenced by nonrandom mating for all crosses. Reasons for incompatibility involving B. carambolae remain unclear; however, we observed differences in the location of couples in the field cage for some comparisons. Alongside other factors such as pheromone composition or other courtship signals, this may lead to reduced interspecific mating compatibility with B. carambolae. These data add to evidence that B. dorsalis, B. papayae, and B. philippinensis represent the same biological species, while B. carambolae remains sufficiently different to maintain its current taxonomic identity. This poses significant implications for this group's systematics, impacting on pest management, and international trade.


Assuntos
Comportamento Sexual Animal , Tephritidae/fisiologia , Animais , Feminino , Controle de Insetos , Masculino , Reprodução , Tephritidae/classificação
3.
Bull Entomol Res ; 102(4): 435-43, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22360877

RESUMO

As a prerequisite for area-wide application of the sterile insect technique in an area encompassing northern Argentina and southern Brazil, prezygotic and postzygotic reproductive compatibility among three geographically distant populations in the area was tested. In field cages, sexually mature adults of each population were found to be sexually compatible, mating duration was not affected by fly origin and there was no clear evidence of spatial partition of mating location. In the laboratory, homotypic and heterotypic crosses for all possible combinations displayed similar levels of fertility and yielded F1 adults without distortion of the sex ratio. Finally, F1 hybrid and parental adults produced equally viable F2 eggs. Put together, our results and those from earlier studies suggest that a large area, ranging from Buenos Aires to the surroundings of São Paulo, could be managed using a single A. fraterculus mass-reared strain. At the northern margin of this area, two A. fraterculus morphotypes appear to coexist in sympatry. We delineate future research to further delimit the distribution of the aff1 morphotype (Argentina-southern Brazil) and to gain insight into evolutionary patterns producing divergence and radiation of tropical fruit fly species.


Assuntos
Reprodução/fisiologia , Tephritidae/fisiologia , Distribuição Animal , Animais , Argentina , Brasil , Feminino , Masculino , Controle Biológico de Vetores/métodos , Reprodução/genética , Comportamento Sexual Animal , Tephritidae/genética
4.
Oecologia ; 99(1-2): 88-94, 1994 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28313952

RESUMO

Predation is probably the most important male mortality factor in insect species with courtship displays that render males performing them conspicuous targets of predators. Sexually active Mediterranean fruit fly males, Ceratitis capitata (Wied.), aggregate in leks, where they participate in agonistic encounters and engage in visual, acoustic and pheromone-calling displays to attract receptive females. The objective of this study was to assess: a) whether sexually displaying C. capitata males in leks inside host and non-host foliage are subject to predation by the most prominent predators yellow-jacket wasps, Vespula germanica (F.), and if so, b) whether olfactory, visual or auditive stimuli are used by foraging wasps in locating male C. capitata prey. Studies were carried out in a citrus orchard and surroundings on the island of Chios, Greece. Observations were conducted using perforated containers hung within mulberry, fig or citrus foliage. Living C. capitata flies of different sex and either mature or immature were placed inside. Our results show that the yellowjacket wasps have learned to associate the presence of sexually active medfly males aggregated in leks with their prey's pheromone (kairomone). Foraging wasps, flying through the crowns of host trees, responded to the odour source of C. capitata male pheromone by approaching from downwind. Even inside dense citrus tree foliage, wasps keyed in on aggregations of pheromone-calling males using olfactory stimuli. Stimuli of visual and acoustic male signalling were only used at close range, after having followed the pheromone plume close to its source. Visual cues played a greater role in directing wasp foraging under more open and exposed host foliage conditions. Odour-based foraging of wasps inside host foliage in the mid-morning hours, when medfly male lekking activities peak, shifted gradually to a more visual-based host fruit patrolling in the afternoons to capture ovipositing and feeding medfly females. On ripe fruit, particularly fig, V. germanica visual prey hunting also included the capture of feeding medfly males, other feeding Diptera, as well as medfly larvae extracted from wasp-made perforations in the fruit.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa