Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(3): 101657, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131263

RESUMO

A wide range of bacteria possess virulence factors such as aminoacyl-tRNA transferases (ATTs) that are capable of rerouting aminoacyl-transfer RNAs away from protein synthesis to conjugate amino acids onto glycerolipids. We recently showed that, although these pathways were thought to be restricted to bacteria, higher fungi also possess ergosteryl-3ß-O-L-aspartate synthases (ErdSs), which transfer the L-Asp moiety of aspartyl-tRNAAsp onto the 3ß-OH group of ergosterol (Erg), yielding ergosteryl-3ß-O-L-aspartate (Erg-Asp). Here, we report the discovery, in fungi, of a second type of fungal sterol-specific ATTs, namely, ergosteryl-3ß-O-glycine (Erg-Gly) synthase (ErgS). ErgS consists of a freestanding DUF2156 domain encoded by a gene distinct from and paralogous to that of ErdS. We show that the enzyme only uses Gly-tRNAGly produced by an independent glycyl-tRNA synthetase (GlyRS) to transfer glycine onto the 3ß-OH of Erg, producing Erg-Gly. Phylogenomics analysis also show that the Erg-Gly synthesis pathway exists only in Ascomycota, including species of biotechnological interest, and more importantly, in human pathogens, such as Aspergillus fumigatus. The discovery of a second type of Erg-aa not only expands the repertoire of this particular class of fungal lipids but suggests that Erg-aa synthases might constitute a genuine subfamily of lipid-modifying ATTs.


Assuntos
Ascomicetos , Ergosterol , Glicina , Aminoácidos , Ascomicetos/genética , Ascomicetos/metabolismo , Ácido Aspártico , Glicina/biossíntese , Glicina/genética , Glicina/metabolismo , Humanos , RNA Fúngico/genética , RNA Fúngico/metabolismo , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo
2.
Microbiol Spectr ; : e0142923, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37768052

RESUMO

Lysyl-diacylglycerol (Lys-DAG) was identified three decades ago in Mycobacterium phlei, but the biosynthetic pathway and function of this aminoacylated lipid have since remained uncharacterized. Combining genetic methods, mass spectrometry, and biochemical approaches, we show that the multiple peptide resistance factor (MprF) homolog LysX from Corynebacterium pseudotuberculosis and two mycobacterial species is responsible for Lys-DAG synthesis. LysX is conserved in most Actinobacteria and was previously implicated in the synthesis of another modified lipid, lysyl-phosphatidylglycerol (Lys-PG), in Mycobacterium tuberculosis. Although we detected low levels of Lys-PG in the membrane of C. pseudotuberculosis, our data suggest that Lys-PG is not directly synthesized by LysX and may require an additional downstream pathway, which is as yet undefined. Our results show that LysX in C. pseudotuberculosis is a major factor of resistance against a variety of positively charged antibacterial agents, including cationic antimicrobial peptides (e.g., human peptide LL-37 and polymyxin B) and aminoglycosides (e.g., gentamycin and apramycin). Deletion of lysX caused an increase in cellular membrane permeability without dissipation of the membrane potential, suggesting that loss of the protein does not result in mechanical damage to the cell membrane. Furthermore, lysX-deficient cells exhibited an attenuated virulence phenotype in a Galleria mellonella infection model, supporting a role for LysX during infection. Altogether, Lys-DAG represents a novel molecular determinant for antimicrobial resistance and virulence that may be widespread in Actinobacteria and points to a richer landscape than previously realized of lipid components contributing to overall membrane physiology in this important bacterial phylum. IMPORTANCE In the past two decades, tRNA-dependent modification of membrane phosphatidylglycerol has been implicated in altering the biochemical properties of the cell surface, thereby enhancing the antimicrobial resistance and virulence of various bacterial pathogens. Here, we show that in several Actinobacteria, the multifunctional protein LysX attaches lysine to diacylglycerol instead of phosphatidylglycerol. We found that lysyl-diacylglycerol (Lys-DAG) confers high levels of resistance against various cationic antimicrobial peptides and aminoglycosides and also enhances virulence. Our data show that Lys-DAG is a lipid commonly found in important actinobacterial pathogens, including Mycobacterium and Corynebacterium species.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa