Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 539(7628): 280-283, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27806378

RESUMO

Elucidating the material culture of early people in arid Australia and the nature of their environmental interactions is essential for understanding the adaptability of populations and the potential causes of megafaunal extinctions 50-40 thousand years ago (ka). Humans colonized the continent by 50 ka, but an apparent lack of cultural innovations compared to people in Europe and Africa has been deemed a barrier to early settlement in the extensive arid zone. Here we present evidence from Warratyi rock shelter in the southern interior that shows that humans occupied arid Australia by around 49 ka, 10 thousand years (kyr) earlier than previously reported. The site preserves the only reliably dated, stratified evidence of extinct Australian megafauna, including the giant marsupial Diprotodon optatum, alongside artefacts more than 46 kyr old. We also report on the earliest-known use of ochre in Australia and Southeast Asia (at or before 49-46 ka), gypsum pigment (40-33 ka), bone tools (40-38 ka), hafted tools (38-35 ka), and backed artefacts (30-24 ka), each up to 10 kyr older than any other known occurrence. Thus, our evidence shows that people not only settled in the arid interior within a few millennia of entering the continent, but also developed key technologies much earlier than previously recorded for Australia and Southeast Asia.


Assuntos
Evolução Cultural/história , Clima Desértico , Extinção Biológica , Migração Humana/história , Tecnologia/história , Animais , Arqueologia , Sudeste Asiático , Austrália , Aves , Corantes/história , História Antiga , Humanos , Marsupiais
2.
BMC Evol Biol ; 19(1): 233, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881941

RESUMO

BACKGROUND: Palaeognathae is a basal clade within Aves and include the large and flightless ratites and the smaller, volant tinamous. Although much research has been conducted on various aspects of palaeognath morphology, ecology, and evolutionary history, there are still areas which require investigation. This study aimed to fill gaps in our knowledge of the Southern Cassowary, Casuarius casuarius, for which information on the skeletal systems of the syrinx, hyoid and larynx is lacking - despite these structures having been recognised as performing key functional roles associated with vocalisation, respiration and feeding. Previous research into the syrinx and hyoid have also indicated these structures to be valuable for determining evolutionary relationships among neognath taxa, and thus suggest they would also be informative for palaeognath phylogenetic analyses, which still exhibits strong conflict between morphological and molecular trees. RESULTS: The morphology of the syrinx, hyoid and larynx of C. casuarius is described from CT scans. The syrinx is of the simple tracheo-bronchial syrinx type, lacking specialised elements such as the pessulus; the hyoid is relatively short with longer ceratobranchials compared to epibranchials; and the larynx is comprised of entirely cartilaginous, standard avian anatomical elements including a concave, basin-like cricoid and fused cricoid wings. As in the larynx, both the syrinx and hyoid lack ossification and all three structures were most similar to Dromaius. We documented substantial variation across palaeognaths in the skeletal character states of the syrinx, hyoid, and larynx, using both the literature and novel observations (e.g. of C. casuarius). Notably, new synapomorphies linking Dinornithiformes and Tinamidae are identified, consistent with the molecular evidence for this clade. These shared morphological character traits include the ossification of the cricoid and arytenoid cartilages, and an additional cranial character, the articulation between the maxillary process of the nasal and the maxilla. CONCLUSION: Syrinx, hyoid and larynx characters of palaeognaths display greater concordance with molecular trees than do other morphological traits. These structures might therefore be less prone to homoplasy related to flightlessness and gigantism, compared to typical morphological traits emphasised in previous phylogenetic studies.


Assuntos
Laringe/anatomia & histologia , Paleógnatas/anatomia & histologia , Paleógnatas/genética , Filogenia , Animais , Evolução Biológica , Feminino , Glote/anatomia & histologia , Masculino , Orofaringe/anatomia & histologia , Paleógnatas/classificação , Vocalização Animal
3.
Biol Lett ; 15(8): 20190467, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31387471

RESUMO

Insular avifaunas have repeatedly spawned evolutionary novelties in the form of unusually large, often flightless species. We report fossils from the Early Miocene St Bathans Fauna of New Zealand that attests to the former existence of a giant psittaciform, which is described as a new genus and species. The fossils are two incomplete tibiotarsi from a bird with an estimated mass of 7 kg, double that of the heaviest known parrot, the kakapo Strigops habroptila. These psittaciform fossils show that parrots join the growing group of avian taxa prone to giantism in insular species, currently restricted to palaeognaths, anatids, sylviornithids, columbids, aptornithids, ciconiids, tytonids, falconids and accipitrids.


Assuntos
Papagaios , Animais , Evolução Biológica , Fósseis , Nova Zelândia , Filogenia
4.
Proc Biol Sci ; 283(1822)2016 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-26763698

RESUMO

The moa (Dinornithiformes) are large to gigantic extinct terrestrial birds of New Zealand. Knowledge about niche partitioning, feeding mode and preference among moa species is limited, hampering palaeoecological reconstruction and evaluation of the impacts of their extinction on remnant native biota, or the viability of exotic species as proposed ecological 'surrogates'. Here we apply three-dimensional finite-element analysis to compare the biomechanical performance of skulls from five of the six moa genera, and two extant ratites, to predict the range of moa feeding behaviours relative to each other and to living relatives. Mechanical performance during biting was compared using simulations of the birds clipping twigs based on muscle reconstruction of mummified moa remains. Other simulated food acquisition strategies included lateral shaking, pullback and dorsoventral movement of the skull. We found evidence for limited overlap in biomechanical performance between the extant emu (Dromaius novaehollandiae) and extinct upland moa (Megalapteryx didinus) based on similarities in mandibular stress distribution in two loading cases, but overall our findings suggest that moa species exploited their habitats in different ways, relative to both each other and extant ratites. The broad range of feeding strategies used by moa, as inferred from interspecific differences in biomechanical performance of the skull, provides insight into mechanisms that facilitated high diversities of these avian herbivores in prehistoric New Zealand.


Assuntos
Aves/fisiologia , Herbivoria , Crânio/fisiologia , Animais , Fenômenos Biomecânicos , Extinção Biológica , Fósseis , Imageamento Tridimensional , Nova Zelândia , Crânio/anatomia & histologia , Especificidade da Espécie
5.
Mol Phylogenet Evol ; 102: 295-304, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27261250

RESUMO

The New Zealand acanthisittid wrens are the sister-taxon to all other "perching birds" (Passeriformes) and - including recently extinct species - represent the most diverse endemic passerine family in New Zealand. Consequently, they are important for understanding both the early evolution of Passeriformes and the New Zealand biota. However, five of the seven species have become extinct since the arrival of humans in New Zealand, complicating evolutionary analyses. The results of morphological analyses have been largely equivocal, and no comprehensive genetic analysis of Acanthisittidae has been undertaken. We present novel mitochondrial genome sequences from four acanthisittid species (three extinct, one extant), allowing us to resolve the phylogeny and revise the taxonomy of acanthisittids. Reanalysis of morphological data in light of our genetic results confirms a close relationship between the extant rifleman (Acanthisitta chloris) and an extinct Miocene wren (Kuiornis indicator), making Kuiornis a useful calibration point for molecular dating of passerines. Our molecular dating analyses reveal that the stout-legged wrens (Pachyplichas) diverged relatively recently from a more gracile (Xenicus-like) ancestor. Further, our results suggest a possible Early Oligocene origin of the basal Lyall's wren (Traversia) lineage, which would imply that Acanthisittidae survived the Oligocene marine inundation of New Zealand and therefore that the inundation was not complete.


Assuntos
Genoma Mitocondrial , Aves Canoras/classificação , Animais , Teorema de Bayes , Evolução Biológica , Osso e Ossos/metabolismo , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , DNA Mitocondrial/química , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Extinção Biológica , Nova Zelândia , Filogenia , Análise de Sequência de DNA , Aves Canoras/genética
6.
Proc Natl Acad Sci U S A ; 110(42): 16910-5, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082104

RESUMO

Knowledge of extinct herbivore community structuring is essential for assessing the wider ecological impacts of Quaternary extinctions and determining appropriate taxon substitutes for rewilding. Here, we demonstrate the potential for coprolite studies to progress beyond single-species diet reconstructions to resolving community-level detail. The moa (Aves: Dinornithiformes) of New Zealand are an intensively studied group of nine extinct herbivore species, yet many details of their diets and community structuring remain unresolved. We provide unique insights into these aspects of moa biology through analyses of a multispecies coprolite assemblage from a rock overhang in a montane river valley in southern New Zealand. Using ancient DNA (aDNA), we identified 51 coprolites, which included specimens from four sympatric moa species. Pollen, plant macrofossils, and plant aDNA from the coprolites chronicle the diets and habitat preferences of these large avian herbivores during the 400 y before their extinction (∼1450 AD). We use the coprolite data to develop a paleoecological niche model in which moa species were partitioned based on both habitat (forest and valley-floor herbfield) and dietary preferences, the latter reflecting allometric relationships between body size, digestive efficiency, and nutritional requirements. Broad ecological niches occupied by South Island giant moa (Dinornis robustus) and upland moa (Megalapteryx didinus) may reflect sexual segregation and seasonal variation in habitat use, respectively. Our results show that moa lack extant ecological analogs, and their extinction represents an irreplaceable loss of function from New Zealand's terrestrial ecosystems.


Assuntos
Ecossistema , Fósseis , Herbivoria/fisiologia , Paleógnatas/fisiologia , Animais , Comportamento Animal/fisiologia , Nova Zelândia
7.
Proc Natl Acad Sci U S A ; 107(35): 15512-6, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20713711

RESUMO

Meiolaniid or horned turtles are members of the extinct Pleistocene megafauna of Australia and the southwest Pacific. The timing and causes of their extinction have remained elusive. Here we report the remains of meiolaniid turtles from cemetery and midden layers dating 3,100/3,000 calibrated years before present to approximately 2,900/2,800 calibrated years before present in the Teouma Lapita archaeological site on Efate in Vanuatu. The remains are mainly leg bones; shell fragments are scant and there are no cranial or caudal elements, attesting to off-site butchering of the turtles. The new taxon differs markedly from other named insular terrestrial horned turtles. It is the only member of the family demonstrated to have survived into the Holocene and the first known to have become extinct after encountering humans.


Assuntos
Osso e Ossos/anatomia & histologia , Extinção Biológica , Fósseis , Tartarugas/anatomia & histologia , Animais , Austrália , Geografia , Humanos , Fatores de Tempo , Tartarugas/classificação , Vanuatu
8.
Anat Rec (Hoboken) ; 306(7): 1842-1863, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37314297

RESUMO

The late Miocene Dromornis stirtoni is the largest of the giant flightless dromornithid birds. Here, we studied 22 long bones (femora, tibiotarsi, tarsometatarsi) of D. stirtoni to assess its osteohistology to deduce various aspects of its life history. Our results show that D. stirtoni took several years (likely, more than a decade), to reach adult body size, after which its growth rate slowed down, and skeletal maturity occurred. This growth strategy differs from that of its Pleistocene relative, Genyornis newtoni, which experienced faster rates of growth to reach adult body size. We propose that these mihirung birds, separated by millions of years, each responded to the prevailing environmental conditions of the time, by selecting for different growth strategies, with D. stirtoni having an extreme K-selected life history strategy. The presence of medullary bone permitted the identification of female D. stirtoni specimens, and its presence in some bones lacking an OCL layer showed sexual maturity preceded its formation. We postulate that while G. newtoni had a somewhat greater reproductive potential than D. stirtoni, it remained far less than that observed in the extant emu (Dromaius novaehollandiae). Genyornis newtoni survived into the late Pleistocene alongside extant emus and overlapped the arrival of the first humans in Australia, but the former species shortly thereafter became extinct while emus remain prolific.


Assuntos
Osso e Ossos , Dromaiidae , Animais , Feminino , Austrália
9.
R Soc Open Sci ; 10(5): 230211, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37266037

RESUMO

Diprotodontids were the largest marsupials to exist and an integral part of Australian terrestrial ecosystems until the last members of the group became extinct approximately 40 000 years ago. Despite the frequency with which diprotodontid remains are encountered, key aspects of their morphology, systematics, ecology and evolutionary history remain poorly understood. Here we describe new skeletal remains of the Pliocene taxon Zygomaturus keanei from northern South Australia. This is only the third partial skeleton of a late Cenozoic diprotodontid described in the last century, and the first displaying soft tissue structures associated with footpad impressions. Whereas it is difficult to distinguish Z. keanei and the type species of the genus, Z. trilobus, on dental grounds, the marked cranial and postcranial differences suggest that Z. keanei warrants genus-level distinction. Accordingly, we place it in the monotypic Ambulator gen. nov. We, also recognize the late Miocene Z. gilli as a nomen dubium. Features of the forelimb, manus and pes reveal that Ambulator keanei was more graviportal with greater adaptation to quadrupedal walking than earlier diprotodontids. These adaptations may have been driven by a need to travel longer distances to obtain resources as open habitats expanded in the late Pliocene of inland Australia.

10.
Sci Rep ; 13(1): 14521, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666885

RESUMO

Diprotodontians are the morphologically and ecologically most diverse order of marsupials. However, an approximately 30-million-year gap in the Australian terrestrial vertebrate fossil record means that the first half of diprotodontian evolution is unknown. Fossil taxa from immediately either side of this gap are therefore critical for reconstructing the early evolution of the order. Here we report the likely oldest-known koala relatives (Phascolarctidae), from the late Oligocene Pwerte Marnte Marnte Local Fauna (central Australia). These include coeval species of Madakoala and Nimiokoala, as well as a new probable koala (?Phascolarctidae). The new taxon, Lumakoala blackae gen. et sp. nov., was comparable in size to the smallest-known phascolarctids, with body-mass estimates of 2.2-2.6 kg. Its bunoselenodont upper molars retain the primitive metatherian condition of a continuous centrocrista, and distinct stylar cusps B and D which lacked occlusion with the hypoconid. This structural arrangement: (1) suggests a morphocline within Phascolarctidae from bunoselenodonty to selenodonty; and (2) better clarifies the evolutionary transitions between molar morphologies within Vombatomorphia. We hypothesize that the molar form of Lumakoala blackae approximates the ancestral condition of the suborder Vombatiformes. Furthermore, it provides a plausible link between diprotodontians and the putative polydolopimorphians Chulpasia jimthorselli and Thylacotinga bartholomaii from the early Eocene Tingamarra Local Fauna (eastern Australia), which we infer as having molar morphologies consistent with stem diprotodontians.


Assuntos
Marsupiais , Phascolarctidae , Animais , Austrália , Fósseis
11.
Biol Lett ; 8(2): 299-303, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22031726

RESUMO

The widespread view that Archaeopteryx was a primitive (basal) bird has been recently challenged by a comprehensive phylogenetic analysis that placed Archaeopteryx with deinonychosaurian theropods. The new phylogeny suggested that typical bird flight (powered by the front limbs only) either evolved at least twice, or was lost/modified in some deinonychosaurs. However, this parsimony-based result was acknowledged to be weakly supported. Maximum-likelihood and related Bayesian methods applied to the same dataset yield a different and more orthodox result: Archaeopteryx is restored as a basal bird with bootstrap frequency of 73 per cent and posterior probability of 1. These results are consistent with a single origin of typical (forelimb-powered) bird flight. The Archaeopteryx-deinonychosaur clade retrieved by parsimony is supported by more characters (which are on average more homoplasious), whereas the Archaeopteryx-bird clade retrieved by likelihood-based methods is supported by fewer characters (but on average less homoplasious). Both positions for Archaeopteryx remain plausible, highlighting the hazy boundary between birds and advanced theropods. These results also suggest that likelihood-based methods (in addition to parsimony) can be useful in morphological phylogenetics.


Assuntos
Aves/classificação , Dinossauros/classificação , Fósseis , Filogenia , Animais , Teorema de Bayes , Aves/anatomia & histologia , Dinossauros/anatomia & histologia , Funções Verossimilhança , Paleontologia
12.
Conserv Biol ; 26(6): 1091-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23025275

RESUMO

Late Quaternary extinctions and population fragmentations have severely disrupted animal-plant interactions globally. Detection of disrupted interactions often relies on anachronistic plant characteristics, such as spines in the absence of large herbivores or large fruit without dispersers. However, obvious anachronisms are relatively uncommon, and it can be difficult to prove a direct link between the anachronism and a particular faunal taxon. Analysis of coprolites (fossil feces) provides a novel way of exposing lost interactions between animals (depositors) and consumed organisms. We analyzed ancient DNA to show that a coprolite from the South Island of New Zealand was deposited by the rare and threatened kakapo (Strigops habroptilus), a large, nocturnal, flightless parrot. When we analyzed the pollen and spore content of the coprolite, we found pollen from the cryptic root-parasite Dactylanthus taylorii. The relatively high abundance (8.9% of total pollen and spores) of this zoophilous pollen type in the coprolite supports the hypothesis of a former direct feeding interaction between kakapo and D. taylorii. The ranges of both species have contracted substantially since human settlement, and their present distributions no longer overlap. Currently, the lesser short-tailed bat (Mystacina tuberculata) is the only known native pollinator of D. taylorii, but our finding raises the possibility that birds, and other small fauna, could have once fed on and pollinated the plant. If confirmed, through experimental work and observations, this finding may inform conservation of the plant. For example, it may be possible to translocate D. taylorii to predator-free offshore islands that lack bats but have thriving populations of endemic nectar-feeding birds. The study of coprolites of rare or extinct taxonomic groups provides a unique way forward to expand existing knowledge of lost plant and animal interactions and to identify pollination and dispersal syndromes. This approach of linking paleobiology with neoecology offers significant untapped potential to help inform conservation and restoration plans.


Assuntos
Balanophoraceae/fisiologia , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Cadeia Alimentar , Fósseis , Papagaios/fisiologia , Animais , DNA/análise , Dieta , Fezes/química , Nova Zelândia , Dispersão Vegetal , Pólen/química , Reação em Cadeia da Polimerase
13.
Zootaxa ; 5168(1): 1-23, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36101304

RESUMO

The Australian Pleistocene fossil record of the Accipitridae (hawks, eagles and Old World vultures) is sparse and poorly known. Only two extinct confirmed accipitrid species have been described for this time period; both have received little investigation since their description. One is Taphaetus lacertosus de Vis, 1905, described from a distal humerus and a quadrate from north-eastern South Australia. While this species was verified as an accipitrid in subsequent studies, its more precise taxonomic affinities have remained conjectural. In this study, a new analysis incorporating newly referred material and phylogenetic analyses using a wide range of accipitriforms reveals that the lectotype humerus of T. lacertosus is an Old World vulture in the subfamily Aegypiinae. The associated quadrate, one of two original syntypes from which de Vis named this species, is of an indeterminate species of ardeid. We erect the novel genus Cryptogyps, to accommodate the species lacertosus, as it cannot be placed in Taphaetus de Vis, 1891, because the type species of this genus, Uroaetus brachialis de Vis, 1889, was transferred back to the genus Uroaetus, a synonym of Aquila Brisson, by de Vis in 1905. Further, U. brachialis is now considered a synonym of Aquila audax (Latham, 1801). Moreover, Taphaetus de Vis, 1891 is a senior homonym of Taphaetus de Vis, 1905, type species Taphaetus lacertosus de Vis, 1905, making the 1905 version of the genus unavailable. Newly referred fossils from Wellington Caves (NSW) and the Nullarbor Plains (WA) reveal this taxon had a wide geographical range across Pleistocene Australia. The referred tarsometatarsus lacks hyper-developed trochleae, indicating that Cryptogyps lacertosus (de Vis, 1905) comb. nov., was probably a scavenger like other aegypiines. Identification of Cryptogyps lacertosus as an aegypiine significantly expands the palaeogeographical range of the Old World vultures, hitherto unknown in Australia. The avian guild of large, obligate scavenging birds of prey, is currently absent in the modern Australian biota, but its former presence is not surprising given the megafauna-rich communities of the Pleistocene.


Assuntos
Águias , Aves Predatórias , Animais , Austrália , Fósseis , Filogenia
14.
Zootaxa ; 5168(1): 39-50, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36101302

RESUMO

A large fossil anserine-like anatid (Aves, Anatidae, Notochen bannockburnensis gen. et sp. nov.) is described based on a distal humerus from the lower Bannockburn Formation, early Miocene (1916 Ma), St Bathans Fauna from New Zealand. Its morphology and size suggest that this taxon represents an early swan rather than a goose. Extant anserines are split into Northern and Southern Hemisphere clades. The St Bathans Fauna is known to have the oldest anserines in the Southern Hemisphere, unnamed cereopsines perhaps ancestral to species of Cnemiornis (New Zealand geese). The elongate and flat morphology of the tuberculum supracondylare ventrale of the new species, however, preclude affinities with cereopsines. It is a rare taxon and the eighth anatid represented in the fauna and is the largest known anseriform from the Oligo-Miocene of Australasia. We also reassess other large anatid specimens from the St Bathans Fauna and identify Miotadorna catrionae Tennyson, Greer, Lubbe, Marx, Richards, Giovanardi Rawlence, 2022 as a junior synonym of Miotadorna sanctibathansi Worthy, Tennyson, Jones, McNamara Douglas, 2007.


Assuntos
Anseriformes , Fósseis , Animais , Aves/anatomia & histologia , Nova Zelândia , Filogenia
15.
R Soc Open Sci ; 9(5): 220135, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35620001

RESUMO

Nocturnal birds display diverse adaptations of the visual system to low-light conditions. The skulls of birds reflect many of these and are used increasingly to infer nocturnality in extinct species. However, it is unclear how reliable such assessments are, particularly in cases of recent evolutionary transitions to nocturnality. Here, we investigate a case of recently evolved nocturnality in the world's only nocturnal hawk, the letter-winged kite Elanus scriptus. We employed phylogenetically informed analyses of orbit, optic foramen and endocast measurements from three-dimensional reconstructions of micro-computed tomography scanned skulls of the letter-winged kite, two congeners, and 13 other accipitrid and falconid raptors. Contrary to earlier suggestions, the letter-winged kite was not unique in any of our metrics. However, all species of Elanus have significantly higher ratios of orbit versus optic foramen diameter, suggesting high visual sensitivity at the expense of acuity. In addition, visual system morphology varies greatly across accipitrid species, likely reflecting hunting styles. Overall, our results suggest that the transition to nocturnality can occur rapidly and without changes to key hard-tissue indicators of vision, but also that hard-tissue anatomy of the visual system may provide a means of inferring a range of raptor behaviours, well beyond nocturnality.

16.
Syst Biol ; 59(4): 433-45, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20547779

RESUMO

A phylogenetic tree comprising clades with high bootstrap values or other strong measures of statistical support is usually interpreted as providing a good estimate of the true phylogeny. Convergent evolution acting on groups of characters in concert, however, can lead to highly supported but erroneous phylogenies. Identifying such groups of phylogenetically misleading characters is obviously desirable. Here we present a procedure that uses an independent data source to identify sets of characters that have undergone concerted convergent evolution. We examine the problematic case of the cormorants and shags, for which trees constructed using osteological and molecular characters both have strong statistical support and yet are fundamentally incongruent. We find that the osteological characters can be separated into those that fit the phylogenetic history implied by the molecular data set and those that do not. Moreover, these latter nonfitting osteological characters are internally consistent and form groups of mutually compatible characters or "cliques," which are significantly larger than cliques of shuffled characters. We suggest, therefore, that these cliques of characters are the result of similar selective pressures and are a signature of concerted convergence.


Assuntos
Evolução Biológica , Aves/genética , Animais , Aves/anatomia & histologia , Aves/classificação , Seleção Genética
17.
Proc Natl Acad Sci U S A ; 105(22): 7676-80, 2008 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-18523023

RESUMO

The pristine island ecosystems of East Polynesia were among the last places on Earth settled by prehistoric people, and their colonization triggered a devastating transformation. Overhunting contributed to widespread faunal extinctions and the decline of marine megafauna, fires destroyed lowland forests, and the introduction of the omnivorous Pacific rat (Rattus exulans) led to a new wave of predation on the biota. East Polynesian islands preserve exceptionally detailed records of the initial prehistoric impacts on highly vulnerable ecosystems, but nearly all such studies are clouded by persistent controversies over the timing of initial human colonization, which has resulted in proposed settlement chronologies varying from approximately 200 B.C. to 1000 A.D. or younger. Such differences underpin radically divergent interpretations of human dispersal from West Polynesia and of ecological and social transformation in East Polynesia and ultimately obfuscate the timing and patterns of this process. Using New Zealand as an example, we provide a reliable approach for accurately dating initial human colonization on Pacific islands by radiocarbon dating the arrival of the Pacific rat. Radiocarbon dates on distinctive rat-gnawed seeds and rat bones show that the Pacific rat was introduced to both main islands of New Zealand approximately 1280 A.D., a millennium later than previously assumed. This matches with the earliest-dated archaeological sites, human-induced faunal extinctions, and deforestation, implying there was no long period of invisibility in either the archaeological or palaeoecological records.


Assuntos
Ecossistema , Emigração e Imigração/história , Fósseis , Animais , História Antiga , Humanos , Nova Zelândia , Polinésia/etnologia , Ratos , Ratos Endogâmicos
19.
Nature ; 425(6954): 172-5, 2003 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12968178

RESUMO

The ratite moa (Aves; Dinornithiformes) were massive graviportal browsers weighing up to 250 kg (ref. 1) that dominated the New Zealand biota until their extinction approximately 500 yr ago. Despite an extensive Quaternary fossil record, moa taxonomy remains problematic and currently 11 species are recognized. Three Dinornis species were found throughout New Zealand and differed markedly in size (1-2 m height at back) and mass (from approximately 34 to 242 kg). Surprisingly, ancient mitochondrial DNA sequences show that the three species were genetically indistinguishable within each island, but formed separate North and South Island clades. Here we show, using the first sex-linked nuclear sequences from an extinct species, that on each island the three morphological forms actually represent just one species, whose size varied markedly according to sex and habitat. The largest females in this example of extreme reversed sexual size dimorphism were about 280% the weight and 150% the height of the largest males, which is unprecedented among birds and terrestrial mammals. The combination of molecular and palaeontological data highlights the difficulties of analysing extinct groups, even those with detailed fossil records.


Assuntos
Constituição Corporal , Ecossistema , Fósseis , Paleógnatas/anatomia & histologia , Caracteres Sexuais , Animais , Evolução Biológica , Peso Corporal , Osso e Ossos/anatomia & histologia , DNA Mitocondrial/genética , Feminino , Geografia , Masculino , Dados de Sequência Molecular , Nova Zelândia , Paleógnatas/classificação , Paleógnatas/genética , Filogenia , Análise para Determinação do Sexo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa