Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Biol Chem ; 295(15): 4822-4835, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32094223

RESUMO

IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a scaffold protein that interacts with numerous binding partners and thereby regulates fundamental biological processes. The functions of IQGAP1 are modulated by several mechanisms, including protein binding, self-association, subcellular localization, and phosphorylation. Proteome-wide screens have indicated that IQGAP1 is ubiquitinated, but the possible effects of this post-translational modification on its function are unknown. Here we characterized and evaluated the function of IQGAP1 ubiquitination. Using MS-based analysis in HEK293 cells, we identified six lysine residues (Lys-556, -1155, -1230, -1465, -1475, and -1528) as ubiquitination sites in IQGAP1. To elucidate the biological consequences of IQGAP1 ubiquitination, we converted each of these lysines to arginine and found that replacing two of these residues, Lys-1155 and Lys-1230, in the GAP-related domain of IQGAP1 (termed IQGAP1 GRD-2K) reduces its ubiquitination. Moreover, IQGAP1 GRD-2K bound a significantly greater proportion of the two Rho GTPases cell division cycle 42 (CDC42) and Rac family small GTPase 1 (RAC1) than did WT IQGAP1. Consistent with this observation, reconstitution of IQGAP1-null cells with IQGAP1 GRD-2K significantly increased the amount of active CDC42 and enhanced cell migration significantly more than WT IQGAP1. Our results reveal that ubiquitination of the CDC42 regulator IQGAP1 alters its ability to bind to and activate this GTPase, leading to physiological effects. Collectively, these findings expand our view of the role of ubiquitination in cell signaling and provide additional insight into CDC42 regulation.


Assuntos
Arginina/metabolismo , Lisina/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo , Arginina/química , Arginina/genética , Movimento Celular , Células HEK293 , Humanos , Lisina/química , Lisina/genética , Proteína cdc42 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas Ativadoras de ras GTPase/química , Proteínas Ativadoras de ras GTPase/genética
2.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795412

RESUMO

The envelope (Env) glycoprotein of HIV is expressed on the surface of productively infected cells and can be used as a target for cytotoxic immunoconjugates (ICs), in which cell-killing moieties, including toxins, drugs, or radionuclides, are chemically or genetically linked to monoclonal antibodies (MAbs) or other targeting ligands. Such ICs could be used to eliminate persistent reservoirs of HIV infection. We have found that MAbs which bind to the external loop of gp41, e.g., MAb 7B2, make highly effective ICs, particularly when used in combination with soluble CD4. We evaluated the toxicity, immunogenicity, and efficacy of the ICs targeted with 7B2 in mice and in simian-human immunodeficiency virus-infected macaques. In the macaques, we tested immunotoxins (ITs), consisting of protein toxins bound to the targeting agent. ITs were well tolerated and initially efficacious but were ultimately limited by their immunogenicity. In an effort to decrease immunogenicity, we tested different toxic moieties, including recombinant toxins, cytotoxic drugs, and tubulin inhibitors. ICs containing deglycosylated ricin A chain prepared from ricin toxin extracted from castor beans were the most effective in killing HIV-infected cells. Having identified immunogenicity as a major concern, we show that conjugation of IT to polyethylene glycol limits immunogenicity. These studies demonstrate that cytotoxic ICs can target virus-infected cells in vivo but also highlight potential problems to be addressed. IMPORTANCE: It is not yet possible to cure HIV infection. Even after years of fully effective antiviral therapy, a persistent reservoir of virus-infected cells remains. Here we propose that a targeted conjugate consisting of an anti-HIV antibody bound to a toxic moiety could function to kill the HIV-infected cells that constitute this reservoir. We tested this approach in HIV-infected cells grown in the lab and in animal infections. Our studies demonstrated that these immunoconjugates are effective both in vitro and in test animals. In particular, ITs constructed with the deglycosylated A chain prepared from native ricin were the most effective in killing cells, but their utility was blunted because they provoked immune reactions that interfered with the therapeutic effects. We then demonstrated that coating of the ITs with polyethylene glycol minimized the immunogenicity, as has been demonstrated with other protein therapies.


Assuntos
Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , Proteína gp160 do Envelope de HIV/antagonistas & inibidores , Imunoconjugados/farmacologia , Animais , Fármacos Anti-HIV/química , Anticorpos Monoclonais/imunologia , Células Cultivadas , Modelos Animais de Doenças , Proteína gp160 do Envelope de HIV/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Humanos , Imunoconjugados/química , Imunotoxinas/farmacologia , Macaca nemestrina , Camundongos , Polietilenoglicóis/química
3.
Biochemistry ; 55(46): 6433-6444, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27798963

RESUMO

IQGAP1 is a multidomain scaffold protein involved in many cellular processes. We have determined the crystal structure of an N-terminal fragment spanning residues 1-191 (CHDF hereafter) that contains the entire calponin homology domain. The structure of the CHDF is very similar to those of other type 3 calponin homology domains like those from calponin, Vav, and the yeast IQGAP1 ortholog Rng2. However, in the crystal, two CHDF molecules form a "head-to-head" or parallel dimer through mostly hydrophobic interactions. Binding experiments indicate that the CHDF binds to both F-actin and Ca2+/calmodulin, but binding is mutually exclusive. On the basis of the structure, two dimer interface substitutions were introduced. While CHDFL157D disrupts the dimer in gel filtration experiments, oxidized CHDFK161C stabilizes the dimer. These results imply that the CHDF forms the same dimer in solution that is seen in the crystal structure. The disulfide-stabilized dimer displays a reduced level of F-actin binding in sedimentation assays and shows no binding to Ca2+/calmodulin in isothermal titration calorimetry (ITC) experiments, indicating that interface residues are utilized for both binding events. The Calmodulin Target Database predicts that residues 93KK94 are important for CaM binding, and indeed, the 93EE94 double mutation displays a reduced level of binding to Ca2+/calmodulin in ITC experiments. Our results indicate that the CHDF dimer interface is used for both F-actin and Ca2+/calmodulin binding, and the 93KK94 pair, near the interface, is also used for Ca2+/calmodulin binding. These results are also consistent with full-length IQGAP1 forming a parallel homodimer.


Assuntos
Actinas/química , Calmodulina/química , Multimerização Proteica , Proteínas Ativadoras de ras GTPase/química , Actinas/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Calmodulina/metabolismo , Calorimetria , Cristalização , Cristalografia por Raios X , Humanos , Modelos Moleculares , Peso Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo
4.
J Biol Chem ; 290(47): 28141-28155, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438824

RESUMO

Secretion of effector proteins into the eukaryotic host cell is required for Chlamydia trachomatis virulence. In the infection process, Scc1 and Scc4, two chaperones of the type III secretion (T3S) system, facilitate secretion of the important effector and plug protein, CopN, but little is known about the details of this event. Here we use biochemistry, mass spectrometry, nuclear magnetic resonance spectroscopy, and genetic analyses to characterize this trimolecular event. We find that Scc4 complexes with Scc1 and CopN in situ at the late developmental cycle of C. trachomatis. We show that Scc4 and Scc1 undergo dynamic interactions as part of the unique bacterial developmental cycle. Using alanine substitutions, we identify several amino acid residues in Scc4 that are critical for the Scc4-Scc1 interaction, which is required for forming the Scc4·Scc1·CopN ternary complex. These results, combined with our previous findings that Scc4 plays a role in transcription (Rao, X., Deighan, P., Hua, Z., Hu, X., Wang, J., Luo, M., Wang, J., Liang, Y., Zhong, G., Hochschild, A., and Shen, L. (2009) Genes Dev. 23, 1818-1829), reveal that the T3S process is linked to bacterial transcriptional events, all of which are mediated by Scc4 and its interacting proteins. A model describing how the T3S process may affect gene expression is proposed.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/metabolismo , Chaperonas Moleculares/metabolismo , Escherichia coli/metabolismo , Células HeLa , Humanos , Solubilidade
5.
J Proteome Res ; 13(2): 1156-66, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24294828

RESUMO

Mammalian IQGAP proteins all feature multiple ∼50 amino acid sequence repeats near their N-termini, and little is known about the function of these "Repeats". We have expressed and purified the Repeats from human IQGAP1 to identify binding partners. We used mass spectrometry to identify 42 mouse kidney proteins that associate with the IQGAP1 Repeats including the ERM proteins ezrin, radixin, and moesin. ERM proteins have an N-terminal FERM domain (4.1, ezrin, radixin, moesin) through which they bind to protein targets and phosphatidylinositol 4,5-bisphosphate (PIP2) and a C-terminal actin-binding domain and function to link the actin cytoskeleton to distinct locations on the cell cortex. Isothermal titration calorimetry (ITC) reveals that the IQGAP1 Repeats directly bind to the ezrin FERM domain, while no binding is seen for full-length "autoinhibited" ezrin or a version of full-length ezrin intended to mimic the activated protein. ITC also indicates that the ezrin FERM domain binds to the Repeats from IQGAP2 but not the Repeats from IQGAP3. We conclude that IQGAP1 and IQGAP2 are positioned at the cell cortex by ERM proteins. We propose that the IQGAP3 Repeats may likewise bind to FERM domains for signaling purposes.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas Ativadoras de ras GTPase/química , Sequência de Aminoácidos , Animais , Calorimetria , Sequência Conservada , DNA Complementar/genética , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Humanos , Camundongos , Reação em Cadeia da Polimerase , Ligação Proteica , Sequências Repetitivas de Aminoácidos , Espectrometria de Massas em Tandem , Proteínas Ativadoras de ras GTPase/metabolismo
6.
Viruses ; 15(3)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992502

RESUMO

Despite the suppression of human immunodeficiency virus (HIV) replication by combined antiretroviral therapy (cART), 50-60% of HIV-infected patients suffer from HIV-associated neurocognitive disorders (HAND). Studies are uncovering the role of extracellular vesicles (EVs), especially exosomes, in the central nervous system (CNS) due to HIV infection. We investigated links among circulating plasma exosomal (crExo) proteins and neuropathogenesis in simian/human immunodeficiency virus (SHIV)-infected rhesus macaques (RM) and HIV-infected and cART treated patients (Patient-Exo). Isolated EVs from SHIV-infected (SHIV-Exo) and uninfected (CTL-Exo) RM were predominantly exosomes (particle size < 150 nm). Proteomic analysis quantified 5654 proteins, of which 236 proteins (~4%) were significantly, differentially expressed (DE) between SHIV-/CTL-Exo. Interestingly, different CNS cell specific markers were abundantly expressed in crExo. Proteins involved in latent viral reactivation, neuroinflammation, neuropathology-associated interactive as well as signaling molecules were expressed at significantly higher levels in SHIV-Exo than CTL-Exo. However, proteins involved in mitochondrial biogenesis, ATP production, autophagy, endocytosis, exocytosis, and cytoskeleton organization were significantly less expressed in SHIV-Exo than CTL-Exo. Interestingly, proteins involved in oxidative stress, mitochondrial biogenesis, ATP production, and autophagy were significantly downregulated in primary human brain microvascular endothelial cells exposed with HIV+/cART+ Patient-Exo. We showed that Patient-Exo significantly increased blood-brain barrier permeability, possibly due to loss of platelet endothelial cell adhesion molecule-1 protein and actin cytoskeleton structure. Our novel findings suggest that circulating exosomal proteins expressed CNS cell markers-possibly associated with viral reactivation and neuropathogenesis-that may elucidate the etiology of HAND.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Humanos , Macaca mulatta , Infecções por HIV/complicações , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Células Endoteliais , Proteômica , Modelos Animais de Doenças , Trifosfato de Adenosina , Carga Viral
7.
Biomed Pharmacother ; 151: 113144, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35623167

RESUMO

Breast cancer (BC) is the most frequently diagnosed malignancy in women and a major public health concern. The Hippo pathway is an evolutionarily conserved signaling pathway that serves as a key regulator for a wide variety of biological processes. Hippo signaling has been shown to have both oncogenic and tumor-suppressive functions in various cancers. Core components of the Hippo pathway consist of various kinases and downstream effectors such as YAP/TAZ. In the current report, differential expression of Hippo pathway elements as well as the correlation of Hippo pathway mRNAs with various clinicopathologic characteristics, including molecular subtypes, receptor status, and methylation status, has been investigated in BC using METABRIC and TCGA datasets. In this review, we note deregulation of several Hippo signaling elements in BC patients. Moreover, we see examples of negative correlations between methylation of Hippo genes and mRNA expression. The expression of Hippo genes significantly varies between different receptor subgroups. Because of the clear associations between mRNA expression and methylation status, DNA methylation may be one of the mechanisms that regulate the Hippo pathway in BC cells. Differential expression of Hippo genes among various BC molecular subtypes suggests that Hippo signaling may function differently in different subtypes of BC. Our data also highlights an interesting link between Hippo components' transcription and ER negativity in BC. In conclusion, substantial deregulation of Hippo signaling components suggests an important role of these genes in breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/genética , Feminino , Via de Sinalização Hippo , Humanos , RNA Mensageiro/genética , Transdução de Sinais/genética , Transcriptoma
8.
Oncogene ; 41(47): 5076-5091, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36243802

RESUMO

Treatment of patients with triple-negative breast cancer (TNBC) has been challenging due to the absence of well-defined molecular targets and the highly invasive and proliferative nature of TNBC cells. Current treatments against TNBC have shown little promise due to high recurrence rate in patients. Consequently, there is a pressing need for novel and efficacious therapies against TNBC. Here, we report the discovery of a novel small molecule inhibitor (NSC33353) with potent anti-tumor activity against TNBC cells. The anti-proliferative effects of this small molecule inhibitor were determined using 2D and 3D cell proliferation assays. We found that NSC33353 significantly reduces the proliferation of TNBC cells in these assays. Using proteomics, next generation sequencing (NGS), and gene enrichment analysis, we investigated global regulatory pathways affected by this compound in TNBC cells. Proteomics data indicate a significant metabolic reprograming affecting both glycolytic enzymes and energy generation through oxidative phosphorylation. Subsequently, using metabolic (Seahorse) and enzymatic assays, we validated our proteomics and NGS analysis findings. Finally, we showed the inhibitory and anti-tumor effects of this small molecule in vitro and confirmed its inhibitory activity in vivo. Doxorubicin is one of the most effective agents in the treatment of TNBC and resistance to this drug has been a major problem. We show that the combination of NSC33353 and doxorubicin suppresses the growth of TNBC cells synergistically, suggesting that NSC33353 enhances TNBC sensitivity to doxorubicin. In summary, our data indicate that the small molecule inhibitor, NSC33353, exhibits anti-tumor activity in TNBC cells, and works in a synergistic fashion with a well-known chemotherapeutic agent.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Biol Chem ; 285(8): 5859-67, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20018897

RESUMO

Motor proteins couple steps in ATP binding and hydrolysis to conformational switching both in and remote from the active site. In our kinesin.AMPPPNP crystal structure, closure of the active site results in structural transformations appropriate for microtubule binding and organizes an orthosteric two-water cluster. We conclude that a proton is shared between the lytic water, positioned for gamma-phosphate attack, and a second water that serves as a general base. To our knowledge, this is the first experimental detection of the catalytic base for any ATPase. Deprotonation of the second water by switch residues likely triggers subsequent large scale structural rearrangements. Therefore, the catalytic base is responsible for initiating nucleophilic attack of ATP and for relaying the positive charge over long distances to initiate mechanotransduction. Coordination of switch movements via sequential proton transfer along paired water clusters may be universal for nucleotide triphosphatases with conserved active sites, such as myosins and G-proteins.


Assuntos
Adenilil Imidodifosfato/química , Cinesinas/química , Água/química , Adenilil Imidodifosfato/metabolismo , Catálise , Domínio Catalítico/fisiologia , Cristalografia por Raios X , Humanos , Hidrólise , Cinesinas/genética , Cinesinas/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Estrutura Terciária de Proteína/fisiologia , Prótons , Água/metabolismo
10.
J Biol Chem ; 285(24): 18650-61, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20299460

RESUMO

Essential in mitosis, the human Kinesin-5 protein is a target for >80 classes of allosteric compounds that bind to a surface-exposed site formed by the L5 loop. Not established is why there are differing efficacies in drug inhibition. Here we compare the ligand-bound states of two L5-directed inhibitors against 15 Kinesin-5 mutants by ATPase assays and IR spectroscopy. Biochemical kinetics uncovers functional differences between individual residues at the N or C termini of the L5 loop. Infrared evaluation of solution structures and multivariate analysis of the vibrational spectra reveal that mutation and/or ligand binding not only can remodel the allosteric binding surface but also can transmit long range effects. Changes in L5-localized 3(10) helix and disordered content, regardless of substitution or drug potency, are experimentally detected. Principal component analysis couples these local structural events to two types of rearrangements in beta-sheet hydrogen bonding. These transformations in beta-sheet contacts are correlated with inhibitory drug response and are corroborated by wild type Kinesin-5 crystal structures. Despite considerable evolutionary divergence, our data directly support a theorized conserved element for long distance mechanochemical coupling in kinesin, myosin, and F(1)-ATPase. These findings also suggest that these relatively rapid IR approaches can provide structural biomarkers for clinical determination of drug sensitivity and drug efficacy in nucleotide triphosphatases.


Assuntos
Sítio Alostérico , Cinesinas/química , Cristalografia por Raios X/métodos , Humanos , Ligação de Hidrogênio , Ligantes , Mitose , Miosinas/química , Preparações Farmacêuticas/química , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , ATPases Translocadoras de Prótons/química , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Nat Struct Mol Biol ; 13(12): 1135-40, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17115053

RESUMO

Although diverse signaling cascades require the coordinated regulation of heterotrimeric G proteins and small GTPases, these connections remain poorly understood. We present the crystal structure of the GTPase Rac1 bound to phospholipase C-beta2 (PLC-beta2), a classic effector of heterotrimeric G proteins. Rac1 engages the pleckstrin-homology (PH) domain of PLC-beta2 to optimize its orientation for substrate membranes. Gbetagamma also engages the PH domain to activate PLC-beta2, and these two activation events are compatible, leading to additive stimulation of phospholipase activity. In contrast to PLC-delta, the PH domain of PLC-beta2 cannot bind phosphoinositides, eliminating this mode of regulation. The structure of the Rac1-PLC-beta2 complex reveals determinants that dictate selectivity of PLC-beta isozymes for Rac GTPases over other Rho-family GTPases, and substitutions within PLC-beta2 abrogate its stimulation by Rac1 but not by Gbetagamma, allowing for functional dissection of this integral signaling node.


Assuntos
Isoenzimas/química , Isoenzimas/metabolismo , Fosfolipases Tipo C/química , Fosfolipases Tipo C/metabolismo , Proteínas rac1 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/metabolismo , Cristalografia por Raios X , Humanos , Isoenzimas/genética , Modelos Moleculares , Mutação/genética , Fosfolipase C beta , Ligação Proteica , Estrutura Quaternária de Proteína , Eletricidade Estática , Fosfolipases Tipo C/genética , Proteínas rac1 de Ligação ao GTP/genética
12.
Biochem Biophys Res Commun ; 381(3): 393-6, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19222995

RESUMO

ROCKII kinase activity is known to be regulated by Rho GTPase binding; however, the context-specific regulation of ROCKII is not clearly understood. We pursued the C-terminal PH domain as a candidate domain for regulating ROCKII function. A proteomics-based screen identified potential ROCKII signaling partners, a large number of which were associated with membrane dynamics. We used subcellular fractionation to demonstrate that ROCKII is localized to both the plasma membrane and internal endosomal membrane fractions, and then used microscopy to show that the C-terminal PH domain can localize to internal or peripheral membrane compartments, depending on the cellular context. Co-immunoprecipitation demonstrated that Dynamin1 is a novel ROCKII binding partner. Furthermore, blocking Dynamin function with a dominant negative mutant mimicked the effect of inhibiting ROCK activity on the actin cytoskeleton. Our data suggest that ROCKII is regulated by localization to specific membrane compartments and its novel binding partner, Dynamin1.


Assuntos
Membrana Celular/enzimologia , Dinamina I/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Encéfalo/enzimologia , Células PC12 , Estrutura Terciária de Proteína , Proteômica , Ratos , Quinases Associadas a rho/genética
13.
J Mol Biol ; 368(5): 1307-20, 2007 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17391702

RESUMO

Rho-family GTPases are activated by the exchange of bound GDP for GTP, a process that is catalyzed by Dbl-family guanine nucleotide exchange factors (GEFs). The catalytic unit of Dbl-family GEFs consists of a Dbl homology (DH) domain followed almost invariantly by a pleckstrin-homology (PH) domain. The majority of the catalytic interface forms between the switch regions of the GTPase and the DH domain, but full catalytic activity often requires the associated PH domain. Although PH domains are usually characterized as lipid-binding regions, they also participate in protein-protein interactions. For example, the DH-associated PH domain of Dbs must contact its cognate GTPases for efficient exchange. Similarly, the N-terminal DH/PH fragment of Trio, which catalyzes exchange on both Rac1 and RhoG, is fourfold more active in vitro than the isolated DH domain. Given continued uncertainty regarding functional roles of DH-associated PH domains, we have undertaken structural and functional analyses of the N-terminal DH/PH cassette of Trio. The crystal structure of this fragment of Trio bound to nucleotide-depleted Rac1 highlights the engagement of the PH domain with Rac1 and substitution of residues involved in this interface substantially diminishes activation of Rac1 and RhoG. Also, these mutations significantly reduce the ability of full-length Trio to induce neurite outgrowth dependent on RhoG activation in PC-12 cells. Overall, these studies substantiate a general role for DH-associated PH domains in engaging Rho GTPases directly for efficient guanine nucleotide exchange and support a parsimonious explanation for the essentially invariant linkage between DH and PH domains.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas rho de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Ativação Enzimática , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual , Proteínas Serina-Treonina Quinases/genética , Alinhamento de Sequência
15.
Mol Cell Biol ; 22(19): 6895-905, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12215546

RESUMO

Dbs is a Rho-specific guanine nucleotide exchange factor (RhoGEF) that exhibits transforming activity when overexpressed in NIH 3T3 mouse fibroblasts. Like many RhoGEFs, the in vitro catalytic activity of Dbs is not limited to a single substrate. It can catalyze the exchange of GDP for GTP on RhoA and Cdc42, both of which are expressed in most cell types. This lack of substrate specificity, which is relatively common among members of the RhoGEF family, complicates efforts to determine the molecular basis of their transforming activity. We have recently determined crystal structures of several RhoGEFs bound to their cognate GTPases and have used these complexes to predict structural determinants dictating the specificities of coupling between RhoGEFs and GTPases. Guided by this information, we mutated Dbs to alter significantly its relative exchange activity for RhoA versus Cdc42 and show that the transformation potential of Dbs correlates with exchange on RhoA but not Cdc42. Supporting this conclusion, oncogenic Dbs activates endogenous RhoA but not endogenous Cdc42 in NIH 3T3 cells. Similarly, a competitive inhibitor that blocks RhoA activation also blocks Dbs-mediated transformation. In conclusion, this study highlights the usefulness of specificity mutants of RhoGEFs as tools to genetically dissect the multiple signaling pathways potentially activated by overexpressed or oncogenic RhoGEFs. These ideas are exemplified for Dbs, which is strongly implicated in the transformation of NIH 3T3 cells via RhoA and not Cdc42.


Assuntos
Transformação Celular Neoplásica/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Células 3T3 , Animais , Fibroblastos/citologia , Fibroblastos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Fatores de Troca de Nucleotídeo Guanina Rho , Relação Estrutura-Atividade , Especificidade por Substrato , Transfecção , Proteína cdc42 de Ligação ao GTP/química , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/química , Proteína rhoA de Ligação ao GTP/genética
16.
Sci Rep ; 7(1): 7579, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790381

RESUMO

Immunotoxins (ITs), which consist of antibodies conjugated to toxins, have been proposed as a treatment for cancer and chronic infections. To develop and improve the ITs, different toxins such as ricin, have been used, aiming for higher efficacy against target cells. The toxin pulchellin, isolated from the Abrus pulchellus plant, has similar structure and function as ricin. Here we have compared two plant toxins, recombinant A chains from ricin (RAC) and pulchellin (PAC) toxins, for their ability to kill HIV Env-expressing cells. In this study, RAC and PAC were produced in E. coli, and chromatographically purified, then chemically conjugated to two different anti-HIV monoclonal antibodies (MAbs), anti-gp120 MAb 924 or anti-gp41 MAb 7B2. These conjugates were characterized biochemically and immunologically. Cell internalization was studied by flow cytometry and confocal microscopy. Results showed that PAC can function within an effective IT. The ITs demonstrated specific binding against native antigens on persistently HIV-infected cells and recombinant antigens on Env-transfected cells. PAC cytotoxicity appears somewhat less than RAC, the standard for comparison. This is the first report that PAC may have utility for the design and construction of therapeutic ITs, highlighting the potential role for specific cell targeting.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Imunotoxinas/farmacologia , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Anticorpos Monoclonais/metabolismo , Linhagem Celular , Endocitose , Escherichia coli/genética , Escherichia coli/metabolismo , Citometria de Fluxo , Anticorpos Anti-HIV/metabolismo , Humanos , Lactonas/química , Microscopia Confocal , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Ricina/genética , Ricina/metabolismo , Ricina/toxicidade , Sesquiterpenos/química
17.
Structure ; 12(6): 1078-86, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15274927

RESUMO

Dbl proteins are guanine nucleotide exchange factors for Rho GTPases, containing adjacent Dbl homology (DH) and pleckstrin homology (PH) domains. This domain architecture is virtually invariant and typically required for full exchange potential. Several structures of DH/PH fragments bound to GTPases implicate the PH domain in nucleotide exchange. To more fully understand the functional linkage between DH and PH domains, we have determined the crystal structure of the DH/PH fragment of Dbs without bound GTPase. This structure is generally similar to previously determined structures of Dbs bound to GTPases albeit with greater apparent mobility between the DH and PH domains. These comparisons suggest that the DH and PH domains of Dbs are spatially primed for binding GTPases and small alterations in intradomain conformations that may be elicited by subtle biological responses, such as altered phosphoinositide levels, are sufficient to enhance exchange by facilitating interactions between the PH domain and GTPases.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Cristalografia por Raios X , Elétrons , GTP Fosfo-Hidrolases/química , Lipídeos/química , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Fatores de Troca de Nucleotídeo Guanina Rho
18.
Structure ; 24(9): 1499-508, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27524202

RESUMO

In signaling, Rho-family GTPases bind effector proteins and alter their behavior. Here we present the crystal structure of Cdc42·GTP bound to the GTPase-activating protein (GAP)-related domain (GRD) of IQGAP2. Four molecules of Cdc42 are bound to two GRD molecules, which bind each other in a parallel dimer. Two Cdc42s bind very similarly to the Ras/RasGAP interaction, while the other two bind primarily to "extra domain" sequences from both GRDs, tying the GRDs together. Calorimetry confirms two-site binding of Cdc42·GTP for the GRDs of both IQGAP2 and IQGAP1. Mutation of important extra domain residues reduces binding to single-site and abrogates Cdc42 binding to a much larger IQGAP1 fragment. Importantly, Rac1·GTP displays only single-site binding to the GRDs, indicating that only Cdc42 promotes IQGAP dimerization. The structure identifies an unexpected role for Cdc42 in protein dimerization, thus expanding the repertoire of interactions of Ras family proteins with their targets.


Assuntos
Guanosina Trifosfato/química , Proteína cdc42 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/química , Proteínas Ativadoras de ras GTPase/química , Motivos de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo
19.
PLoS One ; 7(12): e52613, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285112

RESUMO

BACKGROUND: Many antibody crystal structures have been solved. Structural modeling programs have been developed that utilize this information to predict 3-D structures of an antibody based upon its sequence. Because of the problem of self-reference, the accuracy and utility of these predictions can only be tested when a new structure has not yet been deposited in the Protein Data Bank. METHODS: We have solved the crystal structure of the Fab fragment of RAC18, a protective anti-ricin mAb, to 1.9 Å resolution. We have also modeled the Fv structure of RAC18 using publicly available Ab modeling tools Prediction of Immunoglobulin Structures (PIGS), RosettaAntibody, and Web Antibody Modeling (WAM). The model structures underwent energy minimization. We compared results to the crystal structure on the basis of root-mean-square deviation (RMSD), template modeling score (TM-score), Z-score, and MolProbity analysis. FINDINGS: The crystal structure showed a pocket formed mainly by AA residues in each of the heavy chain complementarity determining regions (CDRs). There were differences between the crystal structure and structures predicted by the modeling tools, particularly in the CDRs. There were also differences among the predicted models, although the differences were small and within experimental error. No one modeling program was clearly superior to the others. In some cases, choosing structures based only on sequence homology to the crystallized Ab yielded RMSDs comparable to the models. CONCLUSIONS: Molecular modeling programs accurately predict the structure of most regions of antibody variable domains of RAC18. The hypervariable CDRs proved most difficult to model, particularly H chain CDR3. Because CDR3 is most often involved in contact with antigen, this defect must be considered when using models to identify potential contacts between antibody and antigen. Because this study represents only a single case, the results cannot be generalized. Rather they highlight the utility and limitations of modeling programs.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Fragmentos Fab das Imunoglobulinas/química , Modelos Moleculares , Ricina/imunologia , Animais , Cristalografia por Raios X , Camundongos , Conformação Proteica
20.
J Biol Chem ; 284(22): 14857-65, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19321438

RESUMO

IQGAP1 is a 190-kDa molecular scaffold containing several domains required for interaction with numerous proteins. One domain is homologous to Ras GTPase-activating protein (GAP) domains. However, instead of accelerating hydrolysis of bound GTP on Ras IQGAP1, using its GAP-related domain (GRD) binds to Cdc42 and Rac1 and stabilizes their GTP-bound states. We report here the crystal structure of the isolated IQGAP1 GRD. Despite low sequence conservation, the overall structure of the GRD is very similar to the GAP domains from p120 RasGAP, neurofibromin, and SynGAP. However, instead of the catalytic "arginine finger" seen in functional Ras GAPs, the GRD has a conserved threonine residue. GRD residues 1099-1129 have no structural equivalent in RasGAP and are seen to form an extension at one end of the molecule. Because the sequence of these residues is highly conserved, this region likely confers a functionality particular to IQGAP family GRDs. We have used isothermal titration calorimetry to demonstrate that the isolated GRD binds to active Cdc42. Assuming a mode of interaction similar to that displayed in the Ras-RasGAP complex, we created an energy-minimized model of Cdc42.GTP bound to the GRD. Residues of the GRD that contact Cdc42 map to the surface of the GRD that displays the highest level of sequence conservation. The model indicates that steric clash between threonine 1046 with the phosphate-binding loop and other subtle changes would likely disrupt the proper geometry required for GTP hydrolysis.


Assuntos
Proteínas Ativadoras de ras GTPase/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Guanosina Trifosfato/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Eletricidade Estática , Proteína cdc42 de Ligação ao GTP/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa