Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Plant Physiol ; 187(4): 2637-2655, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618092

RESUMO

Programmable site-specific nucleases, such as the clustered regularly interspaced short palindromic repeat (CRISPR)/ CRISPR-associated protein 9 (Cas9) ribonucleoproteins (RNPs), have allowed creation of valuable knockout mutations and targeted gene modifications in Chlamydomonas (Chlamydomonas reinhardtii). However, in walled strains, present methods for editing genes lacking a selectable phenotype involve co-transfection of RNPs and exogenous double-stranded DNA (dsDNA) encoding a selectable marker gene. Repair of the dsDNA breaks induced by the RNPs is usually accompanied by genomic insertion of exogenous dsDNA fragments, hindering the recovery of precise, scarless mutations in target genes of interest. Here, we tested whether co-targeting two genes by electroporation of pairs of CRISPR/Cas9 RNPs and single-stranded oligodeoxynucleotides (ssODNs) would facilitate the recovery of precise edits in a gene of interest (lacking a selectable phenotype) by selection for precise editing of another gene (creating a selectable marker)-in a process completely lacking exogenous dsDNA. We used PPX1 (encoding protoporphyrinogen IX oxidase) as the generated selectable marker, conferring resistance to oxyfluorfen, and identified precise edits in the homolog of bacterial ftsY or the WD and TetratriCopeptide repeats protein 1 genes in ∼1% of the oxyfluorfen resistant colonies. Analysis of the target site sequences in edited mutants suggested that ssODNs were used as templates for DNA synthesis during homology directed repair, a process prone to replicative errors. The Chlamydomonas acetolactate synthase gene could also be efficiently edited to serve as an alternative selectable marker. This transgene-free strategy may allow creation of individual strains containing precise mutations in multiple target genes, to study complex cellular processes, pathways, or structures.


Assuntos
Proteínas de Algas/genética , Sistemas CRISPR-Cas , Chlamydomonas/genética , Edição de Genes/métodos , Ribonucleoproteínas/genética
2.
Photosynth Res ; 154(2): 169-182, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36163583

RESUMO

Rubisco activase (Rca) facilitates the catalytic repair of Rubisco, the CO2-fixing enzyme of photosynthesis, following periods of darkness, low to high light transitions or stress. Removal of the redox-regulated isoform of Rubisco activase, Rca-α, enhances photosynthetic induction in Arabidopsis and has been suggested as a strategy for the improvement of crops, which may experience frequent light transitions in the field; however, this has never been tested in a crop species. Therefore, we used RNAi to reduce the Rca-α content of soybean (Glycine max cv. Williams 82) below detectable levels and then characterized the growth, photosynthesis, and Rubisco activity of the resulting transgenics, in both growth chamber and field conditions. Under a 16 h sine wave photoperiod, the reduction of Rca-α contents had no impact on morphological characteristics, leaf expansion rate, or total biomass. Photosynthetic induction rates were unaltered in both chamber-grown and field-grown plants. Plants with reduced Rca-α content maintained the ability to regulate Rubisco activity in low light just as in control plants. This result suggests that in soybean, Rca-α is not as centrally involved in the regulation of Rca oligomer activity as it is in Arabidopsis. The isoform stoichiometry supports this conclusion, as Rca-α comprises only ~ 10% of the Rubisco activase content of soybean, compared to ~ 50% in Arabidopsis. This is likely to hold true in other species that contain a low ratio of Rca-α to Rca-ß isoforms.


Assuntos
Arabidopsis , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Glycine max/metabolismo , Arabidopsis/metabolismo , Ativador de Plasminogênio Tecidual , Proteínas de Plantas/metabolismo , Fotossíntese/fisiologia , Isoformas de Proteínas , Oxirredução
3.
Plant J ; 103(6): 2250-2262, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32593186

RESUMO

Rubisco activase (Rca) facilitates the release of sugar-phosphate inhibitors from the active sites of Rubisco and thereby plays a central role in initiating and sustaining Rubisco activation. In Arabidopsis, alternative splicing of a single Rca gene results in two Rca isoforms, Rca-α and Rca-ß. Redox modulation of Rca-α regulates the function of Rca-α and Rca-ß acting together to control Rubisco activation. Although Arabidopsis Rca-α alone less effectively activates Rubisco in vitro, it is not known how CO2 assimilation and plant growth are impacted. Here, we show that two independent transgenic Arabidopsis lines expressing Rca-α in the absence of Rca-ß ('Rca-α only' lines) grew more slowly in various light conditions, especially under low light or fluctuating light intensity, and in a short day photoperiod compared to wildtype. Photosynthetic induction was slower in the Rca-α only lines, and they maintained a lower rate of CO2 assimilation during both photoperiod types. Our findings suggest Rca oligomers composed of Rca-α only are less effective in initiating and sustaining the activation of Rubisco than when Rca-ß is also present. Currently there are no examples of any plant species that naturally express Rca-α only but numerous examples of species expressing Rca-ß only. That Rca-α exists in most plant species, including many C3 and C4 food and bioenergy crops, implies its presence is adaptive under some circumstances.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oxirredução , Fotossíntese , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Luz , Fenótipo , Plantas Geneticamente Modificadas , Isoformas de Proteínas
4.
Plant J ; 82(1): 1-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25660294

RESUMO

The CO2 concentrating mechanism (CCM) is a key component of the carbon assimilation strategy of aquatic microalgae. Induced by limiting CO2 and tightly regulated, the CCM enables these microalgae to respond rapidly to varying environmental CO2 supplies and to perform photosynthetic CO2 assimilation in a cost-effective way. A functional CCM in eukaryotic algae requires Rubisco sequestration, rapid interconversion between CO2 and HCO3(-) catalyzed by carbonic anhydrases (CAs), and active inorganic carbon (Ci) uptake. In the model microalga Chlamydomonas reinhardtii, a membrane protein HLA3 is proposed to be involved in active Ci uptake across the plasma membrane. In this study, we use an artificially designed transcription activator-like effector (dTALE) to activate the expression of HLA3. The successful activation of HLA3 expression demonstrates dTALE as a promising tool for gene-specific activation and investigation of gene function in Chlamydomonas. Activation of HLA3 expression in high CO2 acclimated cells, where HLA3 is not expressed, resulted in increased Ci accumulation and Ci-dependent photosynthetic O2 evolution specifically in very low CO2 concentrations, which confirms that HLA3 is indeed involved in Ci uptake, and suggests it is mainly associated with HCO3(-) transport in very low CO2 concentrations, conditions in which active CO2 uptake is highly limited.


Assuntos
Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Carbono/metabolismo , Chlamydomonas reinhardtii/genética , Proteínas de Membrana Transportadoras/metabolismo , Ativação Transcricional , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Transporte Biológico , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Oxigênio/metabolismo , Fotossíntese , Regiões Promotoras Genéticas/genética
5.
Mol Cell ; 31(2): 294-301, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18657511

RESUMO

Custom-made zinc-finger nucleases (ZFNs) can induce targeted genome modifications with high efficiency in cell types including Drosophila, C. elegans, plants, and humans. A bottleneck in the application of ZFN technology has been the generation of highly specific engineered zinc-finger arrays. Here we describe OPEN (Oligomerized Pool ENgineering), a rapid, publicly available strategy for constructing multifinger arrays, which we show is more effective than the previously published modular assembly method. We used OPEN to construct 37 highly active ZFN pairs which induced targeted alterations with high efficiencies (1%-50%) at 11 different target sites located within three endogenous human genes (VEGF-A, HoxB13, and CFTR), an endogenous plant gene (tobacco SuRA), and a chromosomally integrated EGFP reporter gene. In summary, OPEN provides an "open-source" method for rapidly engineering highly active zinc-finger arrays, thereby enabling broader practice, development, and application of ZFN technology for biological research and gene therapy.


Assuntos
Endonucleases/metabolismo , Engenharia Genética/métodos , Dedos de Zinco , Sequência de Bases , Endonucleases/toxicidade , Marcação de Genes , Proteínas de Fluorescência Verde/genética , Humanos , Células K562 , Dados de Sequência Molecular , Mutagênese , Mutação/genética , Conformação Proteica
6.
Environ Sci Technol ; 49(15): 9048-55, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26168359

RESUMO

An extensively diverse array of brominated disinfection byproducts (DBPs) were generated following electrochemical disinfection of natural coastal/estuarine water, which is one of the main treatment methods currently under consideration for ballast water treatment. Ultra-high-resolution mass spectrometry revealed 462 distinct brominated DBPs at a relative abundance in the mass spectra of more than 1%. A brominated DBP with a relative abundance of almost 22% was identified as 2,2,4-tribromo-5-hydroxy-4-cyclopentene-1,3-dione, which is an analogue to several previously described 2,2,4-trihalo-5-hydroxy-4-cyclopentene-1,3-diones in drinking water. Several other brominated molecular formulas matched those of other known brominated DBPs, such as dibromomethane, which could be generated by decarboxylation of dibromoacetic acid during ionization, dibromophenol, dibromopropanoic acid, dibromobutanoic acid, bromohydroxybenzoic acid, bromophenylacetic acid, bromooxopentenoic acid, and dibromopentenedioic acid. Via comparison to previously described chlorine-containing analogues, bromophenylacetic acid, dibromooxopentenoic acid, and dibromopentenedioic acid were also identified. A novel compound at a 4% relative abundance was identified as tribromoethenesulfonate. This compound has not been previously described as a DBP, and its core structure of tribromoethene has been demonstrated to show toxicological implications. Here we show that electrochemical disinfection, suggested as a candidate for successful ballast water treatment, caused considerable production of some previously characterized DBPs in addition to novel brominated DBPs, although several hundred compounds remain structurally uncharacterized. Our results clearly demonstrate that electrochemical and potentially direct chlorination of ballast water in estuarine and marine systems should be approached with caution and the concentrations, fate, and toxicity of DBP need to be further characterized.


Assuntos
Desinfecção/métodos , Eletroquímica/métodos , Halogenação , Compostos Orgânicos/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Isótopos , Espectrometria de Massas , Solubilidade
7.
Nature ; 459(7245): 442-5, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19404258

RESUMO

An efficient method for making directed DNA sequence modifications to plant genes (gene targeting) is at present lacking, thereby frustrating efforts to dissect plant gene function and engineer crop plants that better meet the world's burgeoning need for food, fibre and fuel. Zinc-finger nucleases (ZFNs)-enzymes engineered to create DNA double-strand breaks at specific loci-are potent stimulators of gene targeting; for example, they can be used to precisely modify engineered reporter genes in plants. Here we demonstrate high-frequency ZFN-stimulated gene targeting at endogenous plant genes, namely the tobacco acetolactate synthase genes (ALS SuRA and SuRB), for which specific mutations are known to confer resistance to imidazolinone and sulphonylurea herbicides. Herbicide-resistance mutations were introduced into SuR loci by ZFN-mediated gene targeting at frequencies exceeding 2% of transformed cells for mutations as far as 1.3 kilobases from the ZFN cleavage site. More than 40% of recombinant plants had modifications in multiple SuR alleles. The observed high frequency of gene targeting indicates that it is now possible to efficiently make targeted sequence changes in endogenous plant genes.


Assuntos
Desoxirribonucleases/metabolismo , Marcação de Genes/métodos , Genes de Plantas/genética , Nicotiana/genética , Engenharia de Proteínas , Dedos de Zinco , Acetolactato Sintase/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Desoxirribonucleases/química , Desoxirribonucleases/genética , Alimentos Geneticamente Modificados , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Recombinação Genética/genética , Nicotiana/efeitos dos fármacos , Nicotiana/enzimologia , Transformação Genética
8.
BMC Ophthalmol ; 15: 129, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26447043

RESUMO

We present a paediatric case of infectious mononucleosis in a 13-year old, manifesting with follicular conjunctivitis and a conjunctival mass in one eye with no evidence of leucocytosis on the blood count. The diagnosis was confirmed following surgical excision and biopsy. The case represented a diagnostic challenge due to its atypism and given the steady increase in the prevalence of EBV-related ocular diseases in the last years, this report can serve as an example to prompt earlier serological tests to identify the aetiology in similar cases. This is important because EBV can be treated with acyclovir early in the active viral phase.


Assuntos
Conjuntivite Viral/diagnóstico , Infecções por Vírus Epstein-Barr/diagnóstico , Infecções Oculares Virais/diagnóstico , Adolescente , Anticorpos Antivirais/sangue , Conjuntivite Viral/cirurgia , Conjuntivite Viral/virologia , Infecções por Vírus Epstein-Barr/cirurgia , Infecções por Vírus Epstein-Barr/virologia , Antígenos Nucleares do Vírus Epstein-Barr/imunologia , Infecções Oculares Virais/cirurgia , Infecções Oculares Virais/virologia , Humanos , Imunoglobulina G/sangue , Mononucleose Infecciosa/diagnóstico , Mononucleose Infecciosa/cirurgia , Mononucleose Infecciosa/virologia , Masculino , Procedimentos Cirúrgicos Oftalmológicos
9.
Biochem J ; 462(1): 15-24, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25057889

RESUMO

Genome editing is the practice of making predetermined and precise changes to a genome by controlling the location of DNA DSBs (double-strand breaks) and manipulating the cell's repair mechanisms. This technology results from harnessing natural processes that have taken decades and multiple lines of inquiry to understand. Through many false starts and iterative technology advances, the goal of genome editing is just now falling under the control of human hands as a routine and broadly applicable method. The present review attempts to define the technique and capture the discovery process while following its evolution from meganucleases and zinc finger nucleases to the current state of the art: TALEN (transcription-activator-like effector nuclease) technology. We also discuss factors that influence success, technical challenges and future prospects of this quickly evolving area of study and application.


Assuntos
Reparo do DNA por Junção de Extremidades , Engenharia Genética/métodos , Genoma , Reparo de DNA por Recombinação , Fatores de Transcrição/genética , Animais , Reparo do DNA , Endonucleases/genética , Humanos , Plantas/genética , Recombinação Genética , Ativação Transcricional
10.
Plant Biotechnol J ; 12(7): 872-82, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24702864

RESUMO

The genetically tractable microalga Chlamydomonas reinhardtii has many advantages as a model for renewable bioproducts and/or biofuels production. However, one limitation of C. reinhardtii is its relatively low-lipid content compared with some other algal species. To overcome this limitation, we combined ethane methyl sulfonate mutagenesis with fluorescence-activated cell sorting (FACS) of cells stained with the lipophilic stain Nile Red to isolate lipid hyperaccumulating mutants of C. reinhardtii. By manipulating the FACS gates, we sorted mutagenized cells with extremely high Nile Red fluorescence signals that were rarely detected in nonmutagenized populations. This strategy successfully isolated several putative lipid hyperaccumulating mutants exhibiting 23% to 58% (dry weight basis) higher fatty acid contents than their progenitor strains. Significantly, for most mutants, nitrogen starvation was not required to attain high-lipid content nor was there a requirement for a deficiency in starch accumulation. Microscopy of Nile Red stained cells revealed that some mutants exhibit an increase in the number of lipid bodies, which correlated with TLC analysis of triacyglycerol content. Increased lipid content could also arise through increased biomass production. Collectively, our findings highlight the ability to enhance intracellular lipid accumulation in algae using random mutagenesis in conjunction with a robust FACS and lipid yield verification regime. Our lipid hyperaccumulating mutants could serve as a genetic resource for stacking additional desirable traits to further increase lipid production and for identifying genes contributing to lipid hyperaccumulation, without lengthy lipid-induction periods.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Citometria de Fluxo/métodos , Metabolismo dos Lipídeos/genética , Chlamydomonas reinhardtii/citologia , Ácidos Graxos/metabolismo , Mesilatos/farmacologia , Mutagênese , Amido/metabolismo , Triglicerídeos/metabolismo
11.
Nucleic Acids Res ; 39(14): 6315-25, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21459844

RESUMO

Recent studies indicate that the DNA recognition domain of transcription activator-like (TAL) effectors can be combined with the nuclease domain of FokI restriction enzyme to produce TAL effector nucleases (TALENs) that, in pairs, bind adjacent DNA target sites and produce double-strand breaks between the target sequences, stimulating non-homologous end-joining and homologous recombination. Here, we exploit the four prevalent TAL repeats and their DNA recognition cipher to develop a 'modular assembly' method for rapid production of designer TALENs (dTALENs) that recognize unique DNA sequence up to 23 bases in any gene. We have used this approach to engineer 10 dTALENs to target specific loci in native yeast chromosomal genes. All dTALENs produced high rates of site-specific gene disruptions and created strains with expected mutant phenotypes. Moreover, dTALENs stimulated high rates (up to 34%) of gene replacement by homologous recombination. Finally, dTALENs caused no detectable cytotoxicity and minimal levels of undesired genetic mutations in the treated yeast strains. These studies expand the realm of verified TALEN activity from cultured human cells to an intact eukaryotic organism and suggest that low-cost, highly dependable dTALENs can assume a significant role for gene modifications of value in human and animal health, agriculture and industry.


Assuntos
Proteínas de Ligação a DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Técnicas de Silenciamento de Genes , Marcação de Genes/métodos , Sequência de Bases , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Genes Fúngicos , Dados de Sequência Molecular , Mutação , Engenharia de Proteínas/métodos , Estrutura Terciária de Proteína , Recombinação Genética , Saccharomyces cerevisiae/genética
12.
Front Genet ; 14: 1121462, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968584

RESUMO

Climate change is significantly impacting agricultural production worldwide. Peanuts provide food and nutritional security to millions of people across the globe because of its high nutritive values. Drought and heat stress alone or in combination cause substantial yield losses to peanut production. The stress, in addition, adversely impact nutritional quality. Peanuts exposed to drought stress at reproductive stage are prone to aflatoxin contamination, which imposes a restriction on use of peanuts as health food and also adversely impact peanut trade. A comprehensive understanding of the impact of drought and heat stress at physiological and molecular levels may accelerate the development of stress tolerant productive peanut cultivars adapted to a given production system. Significant progress has been achieved towards the characterization of germplasm for drought and heat stress tolerance, unlocking the physiological and molecular basis of stress tolerance, identifying significant marker-trait associations as well major QTLs and candidate genes associated with drought tolerance, which after validation may be deployed to initiate marker-assisted breeding for abiotic stress adaptation in peanut. The proof of concept about the use of transgenic technology to add value to peanuts has been demonstrated. Advances in phenomics and artificial intelligence to accelerate the timely and cost-effective collection of phenotyping data in large germplasm/breeding populations have also been discussed. Greater focus is needed to accelerate research on heat stress tolerance in peanut. A suits of technological innovations are now available in the breeders toolbox to enhance productivity and nutritional quality of peanuts in harsh environments. A holistic breeding approach that considers drought and heat-tolerant traits to simultaneously address both stresses could be a successful strategy to produce climate-resilient peanut genotypes with improved nutritional quality.

13.
Nephrol Dial Transplant ; 27(4): 1534-41, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22193048

RESUMO

BACKGROUND: Proteinuria is a common pathological finding in renal disease. Examining the urinary protein electrophoretic pattern gives clues to the site of origin of the protein. We hypothesized that the type of proteinuria, classified by urine protein electrophoresis and immunofixation (uPEI), may be predicted by simply examining the proportion of higher molecular weight protein (e.g. albumin) in urine total protein content. METHODS: One thousand and eleven patients, whose urine had been sent to the pathology department for uPEI, were analysed for total protein and albumin to creatinine ratio (uPCR and uACR) and the ratio reported as the albumin to total protein ratio (uAPR). In a group of renal outpatients (n=248), we also specifically measured tubular proteins (N-acetyl-ß-D-glucosaminidase, NAG, and ß2-microglobulin) and expressed these as ratios to creatinine (uNCR and uß2CR). To validate these findings, we correlated these measurements with 68 patients in whom we also had renal biopsy data. RESULTS: In receiver operating characteristic (ROC) curve analysis, the AUC for uAPR was 0.84 for predicting tubular proteinuria pattern on uPEI. In the renal outpatient subgroup, uAPR predicted a tubular pattern of urinary protein equally as well as testing for specific tubular protein markers (uNCR and uß2CR). In the validation cohort, a uAPR cut-off of <0.40 was 88% sensitive and 99% specific for the diagnosis of primary tubulointerstitial disorders on renal biopsy. CONCLUSIONS: Useful information about the origins of urinary protein may be inferred by measuring uAPR, the measurement of which is both simple and inexpensive.


Assuntos
Albuminúria/urina , Biomarcadores/urina , Nefropatias/complicações , Proteinúria/urina , Estudos de Coortes , Creatinina/urina , Humanos , Nefropatias/patologia , Nefropatias/urina , Proteinúria/etiologia , Curva ROC , Urinálise
14.
Skeletal Radiol ; 41(6): 677-83, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22057580

RESUMO

OBJECTIVE: This study aims to quantitatively characterize the distribution of subchondral bone density across the human femoral head using a computed tomography derived measurement of bone density and a common reference coordinate system. MATERIALS AND METHODS: Femoral head surfaces were created bilaterally for 30 patients (14 males, 16 females, mean age 67.2 years) through semi-automatic segmentation of reconstructed CT data and used to map bone density, by shrinking them into the subchondral bone and averaging the greyscale values (linearly related to bone density) within 5 mm of the articular surface. Density maps were then oriented with the center of the head at the origin, the femoral mechanical axis (FMA) aligned with the vertical, and the posterior condylar axis (PCA) aligned with the horizontal. Twelve regions were created by dividing the density maps into three concentric rings at increments of 30° from the horizontal, then splitting into four quadrants along the anterior-posterior and medial-lateral axes. Mean values for each region were compared using repeated measures ANOVA and a Bonferroni post hoc test, and side-to-side correlations were analyzed using a Pearson's correlation. RESULTS: The regions representing the medial side of the femoral head's superior portion were found to have significantly higher densities compared to other regions (p < 0.05). Significant side-to-side correlations were found for all regions (r(2) = 0.81 to r(2) = 0.16), with strong correlations for the highest density regions. Side-to-side differences in measured bone density were seen for two regions in the anterio-lateral portion of the femoral head (p < 0.05). CONCLUSIONS: The high correlation found between the left and right sides indicates that this tool may be useful for understanding 'normal' density patterns in hips affected by unilateral pathologies such as avascular necrosis, fracture, developmental dysplasia of the hip, Perthes disease, and slipped capital femoral head epiphysis.


Assuntos
Absorciometria de Fóton/métodos , Densidade Óssea/fisiologia , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/fisiologia , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Fetal Diagn Ther ; 31(4): 244-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22538702

RESUMO

OBJECTIVE: To determine the feasibility of digital PCR analysis for noninvasive prenatal diagnosis of trisomy 21. METHODS: Through power equations, we modeled the number of wells necessary to determine the feasibility of digital PCR as a practical method for trisomy 21 risk assessment. RESULTS: The number of wells needed is a direct correlate of the ability to isolate free fetal DNA. If a 20% fetal DNA enhancement can be achieved, then 2,609 counts would be sufficient to achieve a 99% detection rate for a 1% false-positive rate and potentially feasible with readily available plates. However, if only a 2% increase is seen, then 220,816 counts will be necessary, and over 110,000 would be needed just to achieve 95% for a 5% false-positive rate - both far beyond current commercially available technology. CONCLUSION: There are several noninvasive prenatal diagnostic methods which may reach commercialization; all have differing potential advantages and disadvantages. Digital PCR is potentially a cheaper methodology for trisomy 21, but it is too early to determine the optimal method.


Assuntos
Aneuploidia , DNA/sangue , Síndrome de Down/diagnóstico , Feto , Reação em Cadeia da Polimerase/métodos , Diagnóstico Pré-Natal/métodos , Síndrome de Down/genética , Reações Falso-Positivas , Estudos de Viabilidade , Feminino , Humanos , Gravidez , Análise de Sequência de DNA/métodos
16.
Front Genome Ed ; 4: 901444, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35647579

RESUMO

Peanut (Arachis hypogaea L.), an allotetraploid legume of the Fabaceae family, is able to thrive in tropical and subtropical regions and is considered as a promising oil seed crop worldwide. Increasing the content of oleic acid has become one of the major goals in peanut breeding because of health benefits such as reduced blood cholesterol level, antioxidant properties and industrial benefits such as longer shelf life. Genomic sequencing of peanut has provided evidence of homeologous AhFAD2A and AhFAD2B genes encoding Fatty Acid Desaturase2 (FAD2), which are responsible for catalyzing the conversion of monounsaturated oleic acid into polyunsaturated linoleic acid. Research studies demonstrate that mutations resulting in a frameshift or stop codon in an FAD2 gene leads to higher oleic acid content in oil. In this study, two expression vectors, pDW3873 and pDW3876, were constructed using Cas9 fused to different deaminases, which were tested as tools to induce point mutations in the promoter and the coding sequences of peanut AhFAD2 genes. Both constructs harbor the single nuclease null variant, nCas9 D10A, to which the PmCDA1 cytosine deaminase was fused to the C-terminal (pDW3873) while rAPOBEC1 deaminase and an uracil glycosylase inhibitor (UGI) were fused to the N-terminal and the C-terminal respectively (pDW3876). Three gRNAs were cloned independently into both constructs and the functionality and efficiency were tested at three target sites in the AhFAD2 genes. Both constructs displayed base editing activity in which cytosine was replaced by thymine or other bases in the targeted editing window. pDW3873 showed higher efficiency compared to pDW3876 suggesting that the former is a better base editor in peanut. This is an important step forward considering introgression of existing mutations into elite varieties can take up to 15 years making this tool a benefit for peanut breeders, farmers, industry and ultimately for consumers.

17.
Front Genet ; 13: 849961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571035

RESUMO

Peanut (Arachis hypogaea L.) seed is a rich source of edible oil, comprised primarily of monounsaturated oleic acid and polyunsaturated linoleic acid, accounting for 80% of its fatty acid repertoire. The conversion of oleic acid to linoleic acid, catalyzed by Fatty Acid Desaturase 2 (FAD2) enzymes, is an important regulatory point linked to improved abiotic stress responses while the ratio of these components is a significant determinant of commercial oil quality. Specifically, oleic acid has better oxidative stability leading to longer shelf life and better taste qualities while also providing nutritional based health benefits. Naturally occurring FAD2 gene knockouts that lead to high oleic acid levels improve oil quality at the potential expense of plant health though. We undertook a CRISPR/Cas9 based site-specific genome modification approach designed to downregulate the expression of two homeologous FAD2 genes in seed while maintaining regulation in other plant tissues. Two cis-regulatory elements the RY repeat motif and 2S seed protein motif in the 5'UTR and associated intron of FAD2 genes are potentially important for regulating seed-specific gene expression. Using hairy root and stable germ line transformation, differential editing efficiencies were observed at both CREs when targeted by single gRNAs using two different gRNA scaffolds. The editing efficiencies also differed when two gRNAs were expressed simultaneously. Additionally, stably transformed seed exhibited an increase in oleic acid levels relative to wild type. Taken together, the results demonstrate the immense potential of CRISPR/Cas9 based approaches to achieve high frequency targeted edits in regulatory sequences for the generation of novel transcriptional alleles, which may lead to fine tuning of gene expression and functional genomic studies in peanut.

18.
Plants (Basel) ; 11(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631786

RESUMO

Peanuts are an economically important crop cultivated worldwide. However, several limitations restrained its productivity, including biotic/abiotic stresses. CRISPR/Cas9-based gene-editing technology holds a promising approach to developing new crops with improved agronomic and nutritional traits. Its application has been successful in many important crops. However, the application of this technology in peanut research is limited, probably due to the lack of suitable constructs and protocols. In this study, two different constructs were generated to induce insertion/deletion mutations in the targeted gene for a loss of function study. The first construct harbors the regular gRNA scaffold, while the second construct has the extended scaffold plus terminator. The designed gRNA targeting the coding sequence of the FAD2 genes was cloned into both constructs, and their functionality and efficiency were validated using the hairy root transformation system. Both constructs displayed insertions and deletions as the types of edits. The construct harboring the extended plus gRNA terminator showed a higher editing efficiency than the regular scaffold for monoallelic and biallelic mutations. These two constructs can be used for gene editing in peanuts and could provide tools for improving peanut lines for the benefit of peanut breeders, farmers, and industry.

19.
Front Cell Dev Biol ; 8: 723, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850839

RESUMO

Probiotics are used as microbial food supplements for health and well-being. They are thought to have immunomodulatory effects although their exact physiological mechanism of action is not clear. This study investigated the influence of probiotic Lactobacillus rhamnosus GG conditioned media (LGG-CM) on macrophage phagocytosis of non-pathogenic Escherichia coli HfrC. The gentamicin protection assay was used to study the bacterial killing phases of phagocytosis. Macrophages co-incubated with E. coli for an hour allowed them to ingest bacteria and then the rate of E. coli killing was monitored for up to 300 min to determine the killing or digestion of the bacteria by recovering them from the macrophage lysate. We found that the LGG-CM significantly increased the bacterial killing by approximately 6-fold when compared with that of controls. By contrast, this killing process was found to be associated with enhanced free radical production via the activation of NADPH oxidase, stimulated by the LGG conditioned medium. We also found that the conditioned medium had small effect on nitric oxide (NO) generation, albeit to a lesser extent. This work suggests that LGG-CM may play an important role in suppressing the total microbial load within the macrophages and hence, the extent to which pro-inflammatory molecules such as free radicals and NO are generated. The modulation of inflammation-promoting signals by LGG-CM may be beneficial as it modulates bacterial killing, and thereby prevents any collateral damage to host.

20.
Pest Manag Sci ; 76(12): 4150-4158, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32592433

RESUMO

BACKGROUND: Yersinia entomophaga is an entomopathogenic bacterium that is active against scarab beetles, among other insects. In New Zealand, the African black beetle, Heteronychus arator (Coleoptera: Scarabaeidae), is a major pest of pastures and arable crops but very few control options exist and no insecticides are registered for use in established pastures. RESULTS: In laboratory bioassays, H. arator adults were susceptible to a bait containing Y. entomophaga at low doses. This bait was more effective against H. arator adults during spring than autumn in small-scale field plots (320 mm diameter). A large-scale field trial (40 × 40 m plots) reduced adult numbers substantially: approximately twice as many beetles were captured in pitfall traps from untreated plots compared with plots treated with the Y. entomophaga bait at 70 kg ha-1 . This single bait application in spring also reduced subsequent larval populations in summer. CONCLUSIONS: Heteronychus arator is a difficult pest to manage using chemical insecticides. This biopesticide with Y. entomophaga as the active ingredient offers a new solution for New Zealand pastures, with potential for application to other crops affected by H. arator and for control of other pests. © 2020 Society of Chemical Industry.


Assuntos
Besouros , Negro ou Afro-Americano , Animais , Agentes de Controle Biológico , Humanos , Nova Zelândia , Yersinia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa