Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 27(9): 095704, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26855053

RESUMO

A simple, convenient method for the formation of hybrid metal/conductive polymer nanostructures is described. Polyimidazole (PIm) has been templated on λ-DNA via oxidative polymerisation of imidazole using FeCl3 to produce conductive PIm/DNA nanowires. The PIm/DNA nanowires were decorated with Pd (Pd/PIm/DNA) by electroless reduction of PdCl4(-2) with NaBH4 in the presence of PIm/DNA; the choice of imidazole was motivated by the potential Pd(II) binding site at the pyridinic N atom. The formation of PIm/DNA and the presence of metallic Pd on Pd/PIm/DNA nanowires were verified by FTIR, UV-vis and XPS spectroscopy techniques. AFM studies show that the nanowires have diameters in the range 5-45 nm with a slightly greater mean diameter (17.1 ± 0.75 nm) for the Pd-decorated nanowires than the PIm/DNA nanowires (14.5 ± 0.89 nm). After incubation for 24 h in the polymerisation solution, the PIm/DNA nanowires show a smooth, uniform morphology, which is retained after decoration with Pd. Using a combination of scanned conductance microscopy, conductive AFM and two-terminal measurements we show that both types of nanowire are conductive and that it is possible to discriminate different possible mechanisms of transport. The conductivity of the Pd/PIm/DNA nanowires, (0.1-1.4 S cm(-1)), is comparable to the PIm/DNA nanowires (0.37 ± 0.029 S cm(-1)). In addition, the conductance of Pd/PIm/DNA nanowires exhibits Arrhenius behaviour (E(a )= 0.43 ± 0.02 eV) as a function of temperature in contrast to simple Pd/DNA nanowires. These results indicate that although the Pd crystallites on Pd/PIm/DNA nanowires decorate the PIm polymer, the major current pathway is through the polymer rather than the Pd.

2.
Nanotechnology ; 23(7): 075601, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22261265

RESUMO

DNA strands have been used as templates for the self-assembly of smooth and conductive cuprous oxide (Cu2O) nanowires of diameter 12-23 nm and whose length is determined by the template (16 µm for λ-DNA). A combination of spectroscopic, diffraction and probe microscopy techniques showed that these nanowires comprise single crystallites of Cu2O bound to the DNA molecules which fused together over time in a process analogous to Ostwald ripening, but driven by the free energy of interaction with the template as well as the surface tension. Electrical characterization of the nanowires by a non-contact method, scanned conductance microscopy and by contact mode conductive AFM showed the wires are electrically conductive. The conductivity estimated from the AFM cross section and the zero-bias conductance in conductive AFM experiments was 2.2-3.3 S cm⁻¹. These Cu2O nanowires are amongst the thinnest reported and show evidence of strong quantum confinement in electronic spectra.


Assuntos
Bacteriófago lambda/química , Cobre/química , DNA Viral/química , Nanofios/química , Nanofios/ultraestrutura , Condutividade Elétrica , Microscopia de Força Atômica , Análise Espectral
3.
Langmuir ; 26(3): 2068-75, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19754197

RESUMO

The synthesis of one-dimensional metal nanostructures can be achieved through the use of DNA molecules as templates to control and direct metal deposition. Copper nanostructures have been fabricated using this strategy, through association of Cu(2+) ions to DNA templates and reduced with ascorbic acid. Due to the possibility that the reduction of the Cu(2+) can result in the preferential formation of Cu(2)O over metallic Cu(0), X-ray photoelectron spectroscopy and X-ray diffraction have been carried out to establish the chemical identity of the nanostructures. Conclusive evidence is found that reduction of the Cu(2+) ions does result in the formation of the desired metallic Cu(0) structures. The morphology of the nanostructured Cu(0) material has also been observed by atomic force microscopy, showing the structures to have a "beads-on-a-string" appearance and being 3.0-5.5 nm in height. The electrical properties of the structures have been investigated by scanned conductance microscopy, showing the Cu(0) structures exhibit much larger electrical resistance than expected for a metallic nanowire. This is thought to be a consequence of their "beads-on-a-string" morphology and small lateral dimensions (sub-10 nm); both these factors would be expected to increase the electron scattering rate, and, further, there are likely to be significant tunneling barriers at the Cu(0) particle-particle junctions.


Assuntos
Cobre/química , DNA/química , Condutividade Elétrica , Nanopartículas Metálicas/química , Impedância Elétrica , Microscopia , Microscopia de Força Atômica , Oxirredução , Espectroscopia Fotoeletrônica , Difração de Raios X
4.
Faraday Discuss ; 164: 71-91, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24466659

RESUMO

Electroless templating on DNA is established as a means to prepare high aspect ratio nanowires via aqueous reactions at room temperature. In this report we show how Pd nanowires with extremely small grain sizes (< 2 nm) can be prepared by reduction of PdCl4(2-) in the presence of lambda-DNA. In AFM images the wires are smooth and uniform in appearance, but the grain size estimated by the Scherrer treatment of line broadening in X-ray diffraction is less than the diameter of the wires from AFM (of order 10 nm). Electrical characterisation of single nanowires by conductive AFM shows ohmic behaviour, but with high contact resistances and a resistivity (-10(-2) omega cm) much higher than the bulk value for Pd metal (-10(-5) cm @ 20 degrees C). These observations can be accounted for by a model of the nanowire growth mechanism which naturally leads to the formation of a granular metal. Using a simple combing technique with control of the surface hydrophilicity, DNA-templated Pd nanowires have also been prepared as networks on an Si/SiO2 substrate. These networks are highly convenient for the preparation of two-terminal electronic sensors for the detection of hydrogen gas. The response of these hydrogen sensors is presented and a model of the sensor response in terms of the diffusion of hydrogen into the nanowires is described. The granular structure of the nanowires makes them relatively poor conductors, but they retain a useful sensitivity to hydrogen gas.


Assuntos
DNA/química , Hidrogênio/análise , Nanofios , Paládio/química , Moldes Genéticos , Microscopia de Força Atômica , Análise Espectral
6.
ACS Nano ; 4(4): 2149-59, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20218665

RESUMO

Polyindole (PIn) nanowires were formed on a lambda-DNA template by chemical oxidation of indole using aqueous FeCl3. The resulting nanowires are smooth, regular, conductive and had diameters in the range of 5-30 nm. These features allow them to be aligned by molecular combing and studied by scanned conductance microscopy, conductive AFM, and two-terminal I-V measurements. Using this combination of measurements, we find that the conductivity of PIn/DNA nanowires is between 2.5 and 40 S cm(-1) at room temperature, which is substantially greater than that in previous reports on the bulk polyindole conductivity (typically 10(-2)-10(-1) S cm(-1)). The conductance at zero bias shows an Arrhenius-type of dependence on temperature over the range of 233 to 373 K, and the values observed upon heating and cooling are repeatable within 5%; this behavior is consistent with a hopping mechanism of conductivity.


Assuntos
DNA/química , Indóis/química , Substâncias Luminescentes/química , Nanofios/química , Polímeros/química , Animais , Bovinos , Condutividade Elétrica , Microscopia , Oxirredução , Silício/química , Dióxido de Silício/química , Análise Espectral , Propriedades de Superfície , Temperatura
7.
Chemistry ; 13(3): 822-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17154323

RESUMO

The synthesis of supramolecular conducting nanowires can be achieved by using DNA and pyrrole. Oxidation of pyrrole in DNA-containing solutions yields a material that contains both the cationic polypyrrole (PPy) and the anionic DNA polymers. Intimate interaction of the two polymer chains in the self-assembled nanowires is indicated by FTIR spectroscopy. AFM imaging shows individual nanowires to be continuous, approximately 5 nm high and conformationally flexible. This feature allows them to be aligned by molecular combing in a similar manner to bare DNA and provides a convenient method for fabricating a simple electrical device by stretching DNA/PPy strands across an electrode gap. Current-voltage measurements confirm that the nanowires are conducting, with values typical for a polypyrrole-based material. In contrast to polymerisation of pyrrole on a DNA template in bulk solution, attempts to form similar wires by polymerisation at surface-immobilised DNA do not give a continuous coverage; instead, a beads-on-a-string appearance is observed suggesting that immobilisation inhibits the assembly process.


Assuntos
Substâncias Macromoleculares/síntese química , Nanoestruturas/química , Polímeros/síntese química , Pirróis/síntese química , DNA/química , Condutividade Elétrica , Substâncias Macromoleculares/química , Modelos Moleculares , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Polímeros/química , Pirróis/química , Soluções/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa