Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Mol Genet ; 31(14): 2317-2332, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35137065

RESUMO

Repeat associated non-AUG (RAN) translation of CGG repeats in the 5'UTR of FMR1 produces toxic proteins that contribute to fragile X-associated tremor/ataxia syndrome (FXTAS) pathogenesis. The most abundant RAN product, FMRpolyG, initiates predominantly at an ACG upstream of the repeat. Accurate FMRpolyG measurements in FXTAS patients are lacking. We used data-dependent acquisition and parallel reaction monitoring (PRM) mass spectrometry coupled with stable isotope labeled standard peptides to identify signature FMRpolyG fragments in patient samples. Following immunoprecipitation, PRM detected FMRpolyG signature peptides in transfected cells, and FXTAS tissues and cells, but not in controls. We identified two amino-terminal peptides: an ACG-initiated Ac-MEAPLPGGVR and a GUG-initiated Ac-TEAPLPGGVR, as well as evidence for RAN translation initiation within the CGG repeat itself in two reading frames. Initiation at all sites increased following cellular stress, decreased following eIF1 overexpression and was eIF4A and M7G cap-dependent. These data demonstrate that FMRpolyG is quantifiable in human samples and FMR1 RAN translation initiates via similar mechanisms for near-cognate codons and within the repeat through processes dependent on available initiation factors and cellular environment.


Assuntos
Ataxia , Síndrome do Cromossomo X Frágil , Tremor , Proteína ran de Ligação ao GTP , Ataxia/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Humanos , Peptídeos/metabolismo , Tremor/genética , Expansão das Repetições de Trinucleotídeos , Proteína ran de Ligação ao GTP/genética
2.
Nucleic Acids Res ; 50(15): 8674-8689, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35904811

RESUMO

CGG repeat expansions in the FMR1 5'UTR cause the neurodegenerative disease Fragile X-associated tremor/ataxia syndrome (FXTAS). These repeats form stable RNA secondary structures that support aberrant translation in the absence of an AUG start codon (RAN translation), producing aggregate-prone peptides that accumulate within intranuclear neuronal inclusions and contribute to neurotoxicity. Here, we show that the most abundant RAN translation product, FMRpolyG, is markedly less toxic when generated from a construct with a non-repetitive alternating codon sequence in place of the CGG repeat. While exploring the mechanism of this differential toxicity, we observed a +1 translational frameshift within the CGG repeat from the arginine to glycine reading frame. Frameshifts occurred within the first few translated repeats and were triggered predominantly by RNA sequence and structural features. Short chimeric R/G peptides form aggregates distinct from those formed by either pure arginine or glycine, and these chimeras induce toxicity in cultured rodent neurons. Together, this work suggests that CGG repeats support translational frameshifting and that chimeric RAN translated peptides may contribute to CGG repeat-associated toxicity in FXTAS and related disorders.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Doenças Neurodegenerativas , Agregação Patológica de Proteínas , Repetições de Trinucleotídeos , Arginina/genética , Ataxia , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil , Glicina/genética , Humanos , Doenças Neurodegenerativas/genética , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
3.
J Biol Chem ; 294(49): 18624-18638, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31649034

RESUMO

Repeat-associated non-AUG (RAN) translation is a noncanonical translation initiation event that occurs at nucleotide-repeat expansion mutations that are associated with several neurodegenerative diseases, including fragile X-associated tremor ataxia syndrome (FXTAS), ALS, and frontotemporal dementia (FTD). Translation of expanded repeats produces toxic proteins that accumulate in human brains and contribute to disease pathogenesis. Consequently, RAN translation constitutes a potentially important therapeutic target for managing multiple neurodegenerative disorders. Here, we adapted a previously developed RAN translation assay to a high-throughput format to screen 3,253 bioactive compounds for inhibition of RAN translation of expanded CGG repeats associated with FXTAS. We identified five diverse small molecules that dose-dependently inhibited CGG RAN translation, while relatively sparing canonical translation. All five compounds also inhibited RAN translation of expanded GGGGCC repeats associated with ALS and FTD. Using CD and native gel analyses, we found evidence that three of these compounds, BIX01294, CP-31398, and propidium iodide, bind directly to the repeat RNAs. These findings provide proof-of-principle supporting the development of selective small-molecule RAN translation inhibitors that act across multiple disease-causing repeats.


Assuntos
Esclerose Lateral Amiotrófica/genética , Ataxia/genética , Síndrome do Cromossomo X Frágil/genética , Tremor/genética , Expansão das Repetições de Trinucleotídeos/genética , Esclerose Lateral Amiotrófica/tratamento farmacológico , Animais , Ataxia/tratamento farmacológico , Azepinas/farmacologia , Azepinas/uso terapêutico , Células Cultivadas , Dicroísmo Circular , Expansão das Repetições de DNA/efeitos dos fármacos , Expansão das Repetições de DNA/genética , Avaliação Pré-Clínica de Medicamentos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Células HEK293 , Humanos , Doenças Neurodegenerativas/genética , Propídio/farmacologia , Propídio/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Ratos , Tremor/tratamento farmacológico , Expansão das Repetições de Trinucleotídeos/efeitos dos fármacos
4.
Elife ; 122023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36940239

RESUMO

Over a third of the human genome is comprised of repetitive sequences, including more than a million short tandem repeats (STRs). While studies of the pathologic consequences of repeat expansions that cause syndromic human diseases are extensive, the potential native functions of STRs are often ignored. Here, we summarize a growing body of research into the normal biological functions for repetitive elements across the genome, with a particular focus on the roles of STRs in regulating gene expression. We propose reconceptualizing the pathogenic consequences of repeat expansions as aberrancies in normal gene regulation. From this altered viewpoint, we predict that future work will reveal broader roles for STRs in neuronal function and as risk alleles for more common human neurological diseases.


Assuntos
Genoma Humano , Repetições de Microssatélites , Humanos , Repetições de Microssatélites/genética , Regulação da Expressão Gênica
5.
PLoS One ; 18(11): e0293882, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37976253

RESUMO

Accurate perception and production of auditory rhythms are key for human behaviors such as speech and music. Auditory rhythms in music range in their complexity: complex rhythms (based on non-integer ratios between successive tone durations) are more difficult to perceive and produce than simple rhythms (based on integer ratios). The physiological activity supporting this behavioral difference is not well understood. In a within-subjects design, we addressed how rhythm complexity affects cardiac dynamics during auditory perception and production. Musically trained adults listened to and synchronized with simple and complex auditory rhythms while their cardiac activity was recorded. Participants identified missing tones in the rhythms during the Perception condition and tapped on a keyboard to synchronize with the rhythms in the Synchronization condition. Participants were equally accurate at identifying missing tones in simple and complex rhythms during the Perception condition. Tapping synchronization was less accurate and less precise with complex rhythms than with simple rhythms. Linear cardiac analyses showed a slower mean heart rate and greater heart rate variability during perception than synchronization for both simple and complex rhythms; only nonlinear recurrence quantification analyses reflected cardiac differences between simple and complex auditory rhythms. Nonlinear cardiac dynamics were also more deterministic (predictable) during rhythm perception than synchronization. Individual differences during tapping showed that greater heart rate variability was correlated with poorer synchronization. Overall, these findings suggest that linear measures of musicians' cardiac activity reflect global task variability while nonlinear measures additionally reflect stimulus rhythm complexity.


Assuntos
Música , Transtornos da Percepção , Adulto , Humanos , Percepção Auditiva/fisiologia , Desempenho Psicomotor/fisiologia , Estimulação Acústica
6.
Chronobiol Int ; 39(2): 186-197, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34674591

RESUMO

We addressed how circadian rhythms influence daily musical activities of performing musicians, who exhibit fine temporal control. Music performances often occur in the evening and late at night; evidence suggests that composing musicians tend to be later chronotypes than non-composing musicians. However, chronotype and daily music-making in performing musicians have yet to be investigated. The current study examined chronotype in actively practicing and/or performing musicians and non-musicians, and whether it was related to the daily timing of music performance. To test influences of daily changes due to the global COVID-19 pandemic, disruptions to musical, athletic, social, and sleep habits were also measured. Performing musicians, active (practicing but non-performing) musicians, inactive musicians, and non-musicians, residing in Canada, completed a 7-day online daily activity and sleep diary in Summer 2020. There were more evening chronotypes than morning chronotypes in the sample. Active/performing musicians tended to be earlier chronotypes than all other groups. Musicians' chronotype, but not nightly sleep timing, predicted the time of day that musicians made music: Late chronotypes made music later in the day and early chronotypes made music earlier in the day. Music performance and practice amount decreased during the COVID-19 period, but the daily timing of these activities did not change. All participants reported later sleep onset during the COVID-19 period; the amount of social interaction decreased during the COVID-19 period, while exercise increased for some and decreased for others. No changes in the daily timing of exercise, social interaction, or morning wake-up were reported. These findings suggest that performing musicians may be slightly earlier chronotypes than non-performing musicians and non-musicians, despite music performances often occurring in the evening. Chronotype was related to the time of day of music-making independent of nightly sleep timing, suggesting that times of day for making music reflect an individual's circadian rhythm.


Assuntos
COVID-19 , Música , Ritmo Circadiano , Humanos , Pandemias , SARS-CoV-2 , Sono , Inquéritos e Questionários
7.
EMBO Mol Med ; 13(11): e14163, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34542927

RESUMO

Transcribed CGG repeat expansions cause neurodegeneration in Fragile X-associated tremor/ataxia syndrome (FXTAS). CGG repeat RNAs sequester RNA-binding proteins (RBPs) into nuclear foci and undergo repeat-associated non-AUG (RAN) translation into toxic peptides. To identify proteins involved in these processes, we employed a CGG repeat RNA-tagging system to capture repeat-associated RBPs by mass spectrometry in mammalian cells. We identified several SR (serine/arginine-rich) proteins that interact selectively with CGG repeats basally and under cellular stress. These proteins modify toxicity in a Drosophila model of FXTAS. Pharmacologic inhibition of serine/arginine protein kinases (SRPKs), which alter SRSF protein phosphorylation, localization, and activity, directly inhibits RAN translation of CGG and GGGGCC repeats (associated with C9orf72 ALS/FTD) and triggers repeat RNA retention in the nucleus. Lowering SRPK expression suppressed toxicity in both FXTAS and C9orf72 ALS/FTD model flies, and SRPK inhibitors suppressed CGG repeat toxicity in rodent neurons. Together, these findings demonstrate roles for CGG repeat RNA binding proteins in RAN translation and repeat toxicity and support further evaluation of SRPK inhibitors in modulating RAN translation associated with repeat expansion disorders.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Drosophila , Síndrome do Cromossomo X Frágil , Demência Frontotemporal , Proteínas Serina-Treonina Quinases , Esclerose Lateral Amiotrófica/genética , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Expansão das Repetições de Trinucleotídeos
8.
Front Hum Neurosci ; 14: 311, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192375

RESUMO

Musicians display individual differences in their spontaneous performance rates (tempo) for simple melodies, but the factors responsible are unknown. Previous research suggests that musical tempo modulates listeners' cardiovascular activity. We report an investigation of musicians' melody performances measured over a 12-h day and subsequent changes in the musicians' physiological activity. Skilled pianists completed four testing sessions in a single day as cardiac activity was recorded during an initial 5 min of baseline rest and during performances of familiar and unfamiliar melodies. Results indicated slower tempi for familiar and unfamiliar melodies at early testing times. Performance rates at 09 h were predicted by differences in participants' alertness and musical training; these differences were not explained by sleep patterns, chronotype, or cardiac activity. Individual differences in pianists' performance tempo were consistent across testing sessions: participants with a faster tempo at 09 h maintained a faster tempo at later testing sessions. Cardiac measures at early testing times indicated increased heart rates and more predictable cardiac dynamics during music performance than baseline rest, and during performances of unfamiliar melodies than familiar melodies. These findings provide the first evidence of cardiac dynamics that are unique to music performance contexts.

9.
Nat Neurosci ; 23(3): 386-397, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066985

RESUMO

Repeat-associated non-AUG-initiated translation of expanded CGG repeats (CGG RAN) from the FMR1 5'-leader produces toxic proteins that contribute to neurodegeneration in fragile X-associated tremor/ataxia syndrome. Here we describe how unexpanded CGG repeats and their translation play conserved roles in regulating fragile X protein (FMRP) synthesis. In neurons, CGG RAN acts as an inhibitory upstream open reading frame to suppress basal FMRP production. Activation of mGluR5 receptors enhances FMRP synthesis. This enhancement requires both the CGG repeat and CGG RAN initiation sites. Using non-cleaving antisense oligonucleotides (ASOs), we selectively blocked CGG RAN. This ASO blockade enhanced endogenous FMRP expression in human neurons. In human and rodent neurons, CGG RAN-blocking ASOs suppressed repeat toxicity and prolonged survival. These findings delineate a native function for CGG repeats and RAN translation in regulating basal and activity-dependent FMRP synthesis, and they demonstrate the therapeutic potential of modulating CGG RAN translation in fragile X-associated disorders.


Assuntos
Expansão das Repetições de DNA/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Repetições de Trinucleotídeos/genética , Animais , Linhagem Celular , Sobrevivência Celular/genética , Feminino , Proteína do X Frágil da Deficiência Intelectual/biossíntese , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Neurônios/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Biossíntese de Proteínas , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Receptor de Glutamato Metabotrópico 5/biossíntese , Receptor de Glutamato Metabotrópico 5/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa