RESUMO
BACKGROUND: Dysregulation of eicosanoids is associated with asthma and a composite of oxylipins, including exhaled leukotriene B4 (LTB4 ), characterizes childhood asthma. While fractional exhaled nitric oxide (FeNO) has been used as the standard for monitoring steroid responsiveness, the potential utility of eicosanoids in monitoring the therapeutic outcomes remains unclear. We aimed to examine the levels of major eicosanoids representing different metabolic pathways in exhaled breath condensates (EBCs) of children with asthma during exacerbation and after treatment. METHODS: Levels of 6 exhaled eicosanoid species in asthmatic children and healthy subjects were evaluated using ELISA. RESULTS: In addition to those previously reported, including LTB4 , the levels of exhaled 15-hydroxyeicosatetraenoic acid (15-HETE), but not thromboxane B2 (TXB2 ), showed significant difference between asthmatics (N = 318) and healthy controls (N = 97), particularly the severe group showed the lowest levels of exhaled 15-HETE. Receiver operating characteristic (ROC) curve analyses revealed similar distinguishing power for the levels of 15-HETE, FEV1 (forced expiratory volume in the first second), and FeNO, while the 15-HETE/LTB4 ratio was significantly lower in subjects with asthma as compared to that of healthy controls (p < 0.0001). Analysis of asthmatics (N = 75) during exacerbation and convalescence showed significant improvement in lung function (FEV1 , p < .001), but not FeNO, concomitant with significantly increased levels of 15-HETE (p < .001) and reduced levels of TXB2 (p < .05) at convalescence, particularly for those who at the top 30% level during exacerbation. Further, decreased LTB4 and lipoxin A4 (LXA4 ) at convalescence were noted only in those at the top 30 percentile during exacerbation. CONCLUSION: The exhaled 15-HETE was found to discriminate childhood asthma while decreased levels of exhaled TXB2 and increased levels of 15-HETE were prominent at convalescence.
Assuntos
Asma , Teste da Fração de Óxido Nítrico Exalado , Asma/diagnóstico , Asma/tratamento farmacológico , Testes Respiratórios , Criança , Volume Expiratório Forçado , Humanos , Ácidos Hidroxieicosatetraenoicos , Óxido Nítrico , Resultado do TratamentoRESUMO
Aryl hydrocarbon receptor (AhR), a cellular chemical sensor, controls cellular homeostasis, and sphingosine-1-phosphate (S1P), a bioactive intermediate of sphingolipid metabolism, is believed to have a role in immunity and inflammation, but their potential crosstalk is currently unknown. We aimed to determine whether there is a functional linkage between AhR signaling and sphingolipid metabolism. We showed that AhR ligands, including an environmental polycyclic aromatic hydrocarbon (PAH), induced S1P generation, and inhibited S1P lyase (S1PL) activity in resting cells, antigen/IgE-activated mast cells, and mouse lungs exposed to the AhR ligand alone or in combination with antigen challenge. The reduction of S1PL activity was due to AhR-mediated oxidation of S1PL at residue 317, which was reversible by the addition of an antioxidant or in cells with knockdown of the ORMDL3 gene encoding an ER transmembrane protein, whereas C317A S1PL mutant-transfected cells were resistant to the AhR-mediated effect. Furthermore, analysis of AhR ligand-treated cells showed a time-dependent increase of the ORMDL3-S1PL complex, which was confirmed by FRET analysis. This change increased the S1P levels, which in turn, induced mast cell degranulation via S1PR2 signaling. In addition, elevated levels of plasma S1P were found in children with asthma compared to non-asthmatic subjects. These results suggest a new regulatory pathway whereby the AhR-ligand axis induces ORMDL3-dependent S1P generation by inhibiting S1PL, which may contribute to the expression of allergic diseases.
Assuntos
Aldeído Liases/metabolismo , Hipersensibilidade/metabolismo , Mastócitos/imunologia , Animais , Células Cultivadas , Humanos , Imunoglobulina E/metabolismo , Lisofosfolipídeos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismoRESUMO
In this article, published online 23 March 2018, the affiliation 10 of Zhou Y was incorrect. The affiliation should be "Children's Hospital and Institute of Biomedical Sciences, Fudan University. Key Laboratory of Neonatal Disease, Ministry of Health, 201102, Shanghai, China." The authors regret the errors.