Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Sci ; 112(11): 4515-4525, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34490691

RESUMO

We aimed to identify whether Rho GTPase activating proteins (RhoGAPs) were downregulated in cervical cancers and might be targeted to reduce the growth of cervical cancer using the GEO database and immunohistochemical analysis to identified changes in transcription and protein levels. We analyzed their proliferation, clone formation ability, and their growth as subcutaneous tumors in mice. To detect ARHGAP30 localization in cells, immunofluorescence assays were conducted. Mass spectrometry combined with immunoprecipitation experiments were used to identify binding proteins. Protein interactions were validated with co-immunoprecipitation assays. Western-blot and q-PCR were applied to analyze candidate binding proteins that were associated with ribosome biogenesis. Puromycin incorporation assay was used to detect the global protein synthesis rate. We identified that ARHGAP30 was the only downregulated RhoGAP and was related to the survival of cervical cancer patients. Overexpression of ARHGAP30 in cervical cancer cells inhibited cell proliferation and migration. ARHGAP30 immunoprecipitated proteins were enriched in the ribosome biogenesis process. ARHGAP30 was located in the nucleous and interacted with nucleolin (NCL). Overexpression of ARHGAP30 inhibited rRNA synthesis and global protein synthesis. ARHGAP30 overexpression induced the ubiquitination of NCL and decreased its protein level in Hela cells. The function of ARHGAP30 on cervical cancer cell ribosome biogenesis and proliferation was independent of its RhoGAP activity as assessed with a RhoGAP-deficient plasmid of ARHGAP30R55A . Overall, the findings revealed that ARHGAP30 was frequently downregulated and associated with shorter survival of cervical cancer patients. ARHGAP30 may suppress growth of cervical cancer by reducing ribosome biogenesis and protein synthesis through promoting ubiquitination of NCL.


Assuntos
Proliferação de Células , Proteínas Ativadoras de GTPase/metabolismo , Ribossomos/metabolismo , Neoplasias do Colo do Útero/metabolismo , Animais , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Regulação para Baixo , Feminino , Células HeLa , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Biossíntese de Proteínas , RNA Ribossômico/biossíntese , Proteínas de Ligação a RNA/metabolismo , Ensaio Tumoral de Célula-Tronco , Ubiquitinação , Neoplasias do Colo do Útero/mortalidade , Neoplasias do Colo do Útero/patologia , Nucleolina
2.
Eur J Med Chem ; 259: 115658, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37480712

RESUMO

CYP51, a monooxygenase associated with the sterol synthesis pathway, is responsible for the catalysis of the 14-methyl hydroxylation reaction of lanosterol precursors. This enzyme is widely present in microorganisms, plants, and mammals. In mammals, CYP51 plays a role in cholesterol production, oligodendrocyte formation, oocyte maturation, and spermatogenesis. In fungal cells, CYP51 is an enzyme that synthesizes membrane sterols. By inhibiting fungal CYP51, ergosterol synthesis can be inhibited and ergosterol membrane fluidity is altered, resulting in fungal cell apoptosis. Thus, targeting CYP51 is a reliable antifungal strategy with important implications for the treatment of invasive fungal infections (IFIs). Many CYP51 inhibitors have been approved by the FDA for clinical treatment. However, several limitations of CYP51 inhibitors remain to be resolved, including fungal resistance, hepatotoxicity, and drug-drug interactions. New broad-spectrum, anti-resistant, highly selective CYP51 inhibitors are expected to be developed to enhance clinical efficacy and minimize adverse effects. Herein, we summarize the structural features and biological functions of CYP51 and emphatically analyze the structure-activity relationship (SAR) and therapeutic potential of different chemical types of small-molecule CYP51 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CYP51 for clinical practice.


Assuntos
Inibidores de 14-alfa Desmetilase , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Masculino , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Apoptose , Catálise , Ergosterol , Mamíferos , Família 51 do Citocromo P450/antagonistas & inibidores
3.
iScience ; 26(11): 108226, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37953947

RESUMO

Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel activated by various stimuli, such as heat. A recent study reported that high expression of TRPV4 predicted a poor prognosis in ovarian cancer patients. This study demonstrated that TRPV4 was highly expressed in ovarian cancer and had the ability to promote proliferation and migration. Through RNA-seq and related experiments, we confirmed that the oncogenic pathway of TRPV4 in ovarian cancer may be related to the fatty acid synthesis. By correlation analysis and RNA-seq, we demonstrated that SREBP1 and mTORC1 were inseparably related to that. Therefore, we used inhibitors to perform experiments. Calcium fluorescent probe experiments suggest that the change of calcium content in ovarian cancer cells was related to the downstream mTORC1 signaling pathway and fatty acid synthesis. These results confirmed that TRPV4 affected the fatty acid synthesis through the calcium-mTOR/SREBP1 signaling pathway, thereby promoting ovarian cancer progression.

4.
Gene ; 724: 144150, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31589961

RESUMO

Ovarian cancer (OC) is the deadliest form of gynecologic malignancy, with the majority of patients being diagnosed only once the disease reaches an advanced stage owing to a lack of available biomarkers capable of accurately detecting the disease. Stable circular RNAs (circRNAs) can be found at high levels in exosomes, and there is evidence to suggest that they may be viable diagnostic biomarkers for certain cancers. However, circRNAs in the serum of OC patients have rarely been evaluated to date. We therefore sought to investigate serum circRNA profiles of OC patients, and to explore whether these sorts of circRNAs could be used to detect early OC, serving as biomarkers of disease that may allow for the earlier treatment thereof. Second-generation sequencing was used to screen differentially expressed circRNAs in OC patient serum and also in the serum obtained from healthy controls, and circRNA expression was confirmed by qPCR. A bioinformatics-based approach was then used to assess what biological functions might be affected be the altered regulation of these RNA molecules. We further conducted GO, KEGG, and network analyses to further explore the expression of circRNAs. We detected 178 differentially expressed circRNAs in OC patient serum, of which 175 were up-regulated and 3 were down-regulated. We validated 5 of these identified circRNAs by qPCR to confirm their expression, and further found these RNAs to be closely linked with FC gamma R-mediated phagocytosis, VEGF signaling, Transcriptional misregulation in cancer, Chemokine signaling, ErbB signaling, and TNF signaling based on conducted analyses. This study provides a profile of circRNAs in OC patient serum, revealing a pattern of dysregulation of these RNAs associated with OC. Our bioinformatics analysis suggested that these circRNAs are likely related to OC development, and as such they may be viable novel OC biomarkers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , RNA/sangue , Sítios de Ligação , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Biologia Computacional/métodos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Humanos , RNA/genética , RNA Circular , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa