Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Am J Respir Crit Care Med ; 209(12): 1463-1476, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358857

RESUMO

Rationale: Acute cellular rejection (ACR) after lung transplant is a leading risk factor for chronic lung allograft dysfunction. Prior studies have demonstrated dynamic microbial changes occurring within the allograft and gut that influence local adaptive and innate immune responses. However, the lung microbiome's overall impact on ACR risk remains poorly understood. Objectives: To evaluate whether temporal changes in microbial signatures were associated with the development of ACR. Methods: We performed cross-sectional and longitudinal analyses (joint modeling of longitudinal and time-to-event data and trajectory comparisons) of 16S rRNA gene sequencing results derived from lung transplant recipient lower airway samples collected at multiple time points. Measurements and Main Results: Among 103 lung transplant recipients, 25 (24.3%) developed ACR. In comparing samples acquired 1 month after transplant, subjects who never developed ACR demonstrated lower airway enrichment with several oral commensals (e.g., Prevotella and Veillonella spp.) than those with current or future (beyond 1 mo) ACR. However, a subgroup analysis of those who developed ACR beyond 1 month revealed delayed enrichment with oral commensals occurring at the time of ACR diagnosis compared with baseline, when enrichment with more traditionally pathogenic taxa was present. In longitudinal models, dynamic changes in α-diversity (characterized by an initial decrease and a subsequent increase) and in the taxonomic trajectories of numerous oral commensals were more commonly observed in subjects with ACR. Conclusions: Dynamic changes in the lower airway microbiota are associated with the development of ACR, supporting its potential role as a useful biomarker or in ACR pathogenesis.


Assuntos
Rejeição de Enxerto , Transplante de Pulmão , Humanos , Transplante de Pulmão/efeitos adversos , Masculino , Rejeição de Enxerto/microbiologia , Feminino , Pessoa de Meia-Idade , Estudos Longitudinais , Estudos Transversais , Adulto , Microbiota , RNA Ribossômico 16S/genética , Pulmão/microbiologia , Idoso , Doença Aguda
2.
Am J Respir Crit Care Med ; 208(10): 1101-1114, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37677136

RESUMO

Rationale: Chronic obstructive pulmonary disease (COPD) is associated with high morbidity, mortality, and healthcare costs. Cigarette smoke is a causative factor; however, not all heavy smokers develop COPD. Microbial colonization and infections are contributing factors to disease progression in advanced stages. Objectives: We investigated whether lower airway dysbiosis occurs in mild-to-moderate COPD and analyzed possible mechanistic contributions to COPD pathogenesis. Methods: We recruited 57 patients with a >10 pack-year smoking history: 26 had physiological evidence of COPD, and 31 had normal lung function (smoker control subjects). Bronchoscopy sampled the upper airways, lower airways, and environmental background. Samples were analyzed by 16S rRNA gene sequencing, whole genome, RNA metatranscriptome, and host RNA transcriptome. A preclinical mouse model was used to evaluate the contributions of cigarette smoke and dysbiosis on lower airway inflammatory injury. Measurements and Main Results: Compared with smoker control subjects, microbiome analyses showed that the lower airways of subjects with COPD were enriched with common oral commensals. The lower airway host transcriptomics demonstrated differences in markers of inflammation and tumorigenesis, such as upregulation of IL-17, IL-6, ERK/MAPK, PI3K, MUC1, and MUC4 in mild-to-moderate COPD. Finally, in a preclinical murine model exposed to cigarette smoke, lower airway dysbiosis with common oral commensals augments the inflammatory injury, revealing transcriptomic signatures similar to those observed in human subjects with COPD. Conclusions: Lower airway dysbiosis in the setting of smoke exposure contributes to inflammatory injury early in COPD. Targeting the lower airway microbiome in combination with smoking cessation may be of potential therapeutic relevance.


Assuntos
Lesão Pulmonar , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Disbiose/complicações , RNA Ribossômico 16S , Doença Pulmonar Obstrutiva Crônica/genética , Inflamação/complicações , Lesão Pulmonar/complicações , Pulmão/patologia
3.
Am J Respir Crit Care Med ; 203(9): 1099-1111, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166473

RESUMO

Rationale: Cross-sectional human data suggest that enrichment of oral anaerobic bacteria in the lung is associated with an increased T-helper cell type 17 (Th17) inflammatory phenotype.Objectives: In this study, we evaluated the microbial and host immune-response dynamics after aspiration with oral commensals using a preclinical mouse model.Methods: Aspiration with a mixture of human oral commensals (MOC; Prevotella melaninogenica, Veillonella parvula, and Streptococcus mitis) was modeled in mice followed by variable time of killing. The genetic backgrounds of mice included wild-type, MyD88-knockout, and STAT3C backgrounds.Measurements and Main Results: 16S-rRNA gene sequencing characterized changes in microbiota. Flow cytometry, cytokine measurement via Luminex and RNA host-transcriptome sequencing was used to characterize the host immune phenotype. Although MOC aspiration correlated with lower-airway dysbiosis that resolved within 5 days, it induced an extended inflammatory response associated with IL-17-producing T cells lasting at least 14 days. MyD88 expression was required for the IL-17 response to MOC aspiration, but not for T-cell activation or IFN-γ expression. MOC aspiration before a respiratory challenge with S. pneumoniae led to a decrease in hosts' susceptibility to this pathogen.Conclusions: Thus, in otherwise healthy mice, a single aspiration event with oral commensals is rapidly cleared from the lower airways but induces a prolonged Th17 response that secondarily decreases susceptibility to S. pneumoniae. Translationally, these data implicate an immunoprotective role of episodic microaspiration of oral microbes in the regulation of the lung immune phenotype and mitigation of host susceptibility to infection with lower-airway pathogens.


Assuntos
Infecções Pneumocócicas/prevenção & controle , Streptococcus pneumoniae , Células Th17/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/fisiologia , Infecções Pneumocócicas/etiologia , Prevotella melaninogenica , Streptococcus mitis , Veillonella
4.
Am J Respir Crit Care Med ; 203(3): 339-347, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32692582

RESUMO

Rationale: Chronic hypersensitivity pneumonitis (CHP) is a condition that arises after repeated exposure and sensitization to inhaled antigens. The lung microbiome is increasingly implicated in respiratory disease, but, to date, no study has investigated the composition of microbial communities in the lower airways in CHP.Objectives: To characterize and compare the airway microbiome in subjects with CHP, subjects with idiopathic pulmonary fibrosis (IPF), and control subjects.Methods: We prospectively recruited individuals with a CHP diagnosis (n = 110), individuals with an IPF diagnosis (n = 45), and control subjects (n = 28). Subjects underwent BAL and bacterial DNA was isolated, quantified by quantitative PCR and the 16S ribosomal RNA gene was sequenced to characterize the bacterial communities in the lower airways.Measurements and Main Results: Distinct differences in the microbial profiles were evident in the lower airways of subjects with CHP and IPF. At the phylum level, the prevailing microbiota of both subjects with IPF and subjects with CHP included Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. However, in IPF, Firmicutes dominated, whereas the percentage of reads assigned to Proteobacteria in the same group was significantly lower than the percentage found in subjects with CHP. At the genus level, the Staphylococcus burden was increased in CHP, and Actinomyces and Veillonella burdens were increased in IPF. The lower airway bacterial burden in subjects with CHP was higher than that in control subjects but lower than that of those with IPF. In contrast to IPF, there was no association between bacterial burden and survival in CHP.Conclusions: The microbial profile of the lower airways in subjects with CHP is distinct from that of IPF, and, notably, the bacterial burden in individuals with CHP fails to predict survival.


Assuntos
Alveolite Alérgica Extrínseca/microbiologia , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Fibrose Pulmonar Idiopática/microbiologia , Pulmão/microbiologia , Microbiota , Adulto , Idoso , Idoso de 80 Anos ou mais , Alveolite Alérgica Extrínseca/epidemiologia , Carga Bacteriana , Feminino , Humanos , Fibrose Pulmonar Idiopática/epidemiologia , Londres/epidemiologia , Masculino , Pessoa de Meia-Idade
5.
Eur Respir J ; 58(1)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33446604

RESUMO

BACKGROUND: Microbiome studies of the lower airways based on bacterial 16S rRNA gene sequencing assess microbial community structure but can only infer functional characteristics. Microbial products, such as short-chain fatty acids (SCFAs), in the lower airways have significant impact on the host's immune tone. Thus, functional approaches to the analyses of the microbiome are necessary. METHODS: Here we used upper and lower airway samples from a research bronchoscopy smoker cohort. In addition, we validated our results in an experimental mouse model. We extended our microbiota characterisation beyond 16S rRNA gene sequencing with the use of whole-genome shotgun (WGS) and RNA metatranscriptome sequencing. SCFAs were also measured in lower airway samples and correlated with each of the sequencing datasets. In the mouse model, 16S rRNA gene and RNA metatranscriptome sequencing were performed. RESULTS: Functional evaluations of the lower airway microbiota using inferred metagenome, WGS and metatranscriptome data were dissimilar. Comparison with measured levels of SCFAs shows that the inferred metagenome from the 16S rRNA gene sequencing data was poorly correlated, while better correlations were noted when SCFA levels were compared with WGS and metatranscriptome data. Modelling lower airway aspiration with oral commensals in a mouse model showed that the metatranscriptome most efficiently captures transient active microbial metabolism, which was overestimated by 16S rRNA gene sequencing. CONCLUSIONS: Functional characterisation of the lower airway microbiota through metatranscriptome data identifies metabolically active organisms capable of producing metabolites with immunomodulatory capacity, such as SCFAs.


Assuntos
Bactérias , Microbiota , Animais , Bactérias/genética , Genômica , Metagenoma , Camundongos , RNA Ribossômico 16S/genética
6.
Am J Respir Crit Care Med ; 202(12): 1678-1688, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32673495

RESUMO

Rationale: Workers' exposure to metalworking fluid (MWF) has been associated with respiratory disease.Objectives: As part of a public health investigation of a manufacturing facility, we performed a cross-sectional study using paired environmental and human sampling to evaluate the cross-pollination of microbes between the environment and the host and possible effects on lung pathology present among workers.Methods: Workplace environmental microbiota were evaluated in air and MWF samples. Human microbiota were evaluated in lung tissue samples from workers with respiratory symptoms found to have lymphocytic bronchiolitis and alveolar ductitis with B-cell follicles and emphysema, in lung tissue samples from control subjects, and in skin, nasal, and oral samples from 302 workers from different areas of the facility. In vitro effects of MWF exposure on murine B cells were assessed.Measurements and Main Results: An increased similarity of microbial composition was found between MWF samples and lung tissue samples of case workers compared with control subjects. Among workers in different locations within the facility, those that worked in the machine shop area had skin, nasal, and oral microbiota more closely related to the microbiota present in the MWF samples. Lung samples from four index cases and skin and nasal samples from workers in the machine shop area were enriched with Pseudomonas, the dominant taxa in MWF. Exposure to used MWF stimulated murine B-cell proliferation in vitro, a hallmark cell subtype found in the pathology of index cases.Conclusions: Evaluation of a manufacturing facility with a cluster of workers with respiratory disease supports cross-pollination of microbes from MWF to humans and suggests the potential for exposure to these microbes to be a health hazard.


Assuntos
Aerossóis/efeitos adversos , Poluentes Ocupacionais do Ar/efeitos adversos , Instalações Industriais e de Manufatura , Microbiota , Pseudomonas pseudoalcaligenes , Transtornos Respiratórios/fisiopatologia , Adulto , Microbiologia do Ar , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Respiratórios/etiologia , Estados Unidos
7.
Am J Respir Crit Care Med ; 199(1): 99-109, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29969291

RESUMO

RATIONALE: Obstructive sleep apnea (OSA) is associated with recurrent obstruction, subepithelial edema, and airway inflammation. The resultant inflammation may influence or be influenced by the nasal microbiome. OBJECTIVES: To evaluate whether the composition of the nasal microbiota is associated with obstructive sleep apnea and inflammatory biomarkers. METHODS: Two large cohorts were used: 1) a discovery cohort of 472 subjects from the WTCSNORE (Seated, Supine and Post-Decongestion Nasal Resistance in World Trade Center Rescue and Recovery Workers) cohort, and 2) a validation cohort of 93 subjects rom the Zaragoza Sleep cohort. Sleep apnea was diagnosed using home sleep tests. Nasal lavages were obtained from cohort subjects to measure: 1) microbiome composition (based on 16S rRNA gene sequencing), and 2) biomarkers for inflammation (inflammatory cells, IL-8, and IL-6). Longitudinal 3-month samples were obtained in the validation cohort, including after continuous positive airway pressure treatment when indicated. MEASUREMENTS AND MAIN RESULTS: In both cohorts, we identified that: 1) severity of OSA correlated with differences in microbiome diversity and composition; 2) the nasal microbiome of subjects with severe OSA were enriched with Streptococcus, Prevotella, and Veillonella; and 3) the nasal microbiome differences were associated with inflammatory biomarkers. Network analysis identified clusters of cooccurring microbes that defined communities. Several common oral commensals (e.g., Streptococcus, Rothia, Veillonella, and Fusobacterium) correlated with apnea-hypopnea index. Three months of treatment with continuous positive airway pressure did not change the composition of the nasal microbiota. CONCLUSIONS: We demonstrate that the presence of an altered microbiome in severe OSA is associated with inflammatory markers. Further experimental approaches to explore causal links are needed.


Assuntos
Microbiota , Cavidade Nasal/microbiologia , Apneia Obstrutiva do Sono/microbiologia , Adulto , Biomarcadores/análise , Feminino , Humanos , Interleucina-6/análise , Interleucina-8/análise , Masculino , Microbiota/genética , Pessoa de Meia-Idade , Líquido da Lavagem Nasal/química , RNA Ribossômico 16S/genética , Índice de Gravidade de Doença
8.
Am J Respir Crit Care Med ; 198(9): 1188-1198, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29864375

RESUMO

RATIONALE: In lung cancer, upregulation of the PI3K (phosphoinositide 3-kinase) pathway is an early event that contributes to cell proliferation, survival, and tissue invasion. Upregulation of this pathway was recently described as associated with enrichment of the lower airways with bacteria identified as oral commensals. OBJECTIVES: We hypothesize that host-microbe interactions in the lower airways of subjects with lung cancer affect known cancer pathways. METHODS: Airway brushings were collected prospectively from subjects with lung nodules at time of diagnostic bronchoscopy, including 39 subjects with final lung cancer diagnoses and 36 subjects with noncancer diagnoses. In addition, samples from 10 healthy control subjects were included. 16S ribosomal RNA gene amplicon sequencing and paired transcriptome sequencing were performed on all airway samples. In addition, an in vitro model with airway epithelial cells exposed to bacteria/bacterial products was performed. MEASUREMENTS AND MAIN RESULTS: The composition of the lower airway transcriptome in the patients with cancer was significantly different from the control subjects, which included up-regulation of ERK (extracellular signal-regulated kinase) and PI3K signaling pathways. The lower airways of patients with lung cancer were enriched for oral taxa (Streptococcus and Veillonella), which was associated with up-regulation of the ERK and PI3K signaling pathways. In vitro exposure of airway epithelial cells to Veillonella, Prevotella, and Streptococcus led to upregulation of these same signaling pathways. CONCLUSIONS: The data presented here show that several transcriptomic signatures previously identified as relevant to lung cancer pathogenesis are associated with enrichment of the lower airway microbiota with oral commensals.


Assuntos
Neoplasias Pulmonares/enzimologia , Microbiota/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Sistema Respiratório/enzimologia , Regulação para Cima/fisiologia , Adulto , Idoso , Broncoscopia , Estudos Transversais , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/microbiologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sistema Respiratório/metabolismo , Sistema Respiratório/microbiologia
9.
Eur Respir J ; 52(4)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30093571

RESUMO

Aspiration is associated with nontuberculous mycobacterial (NTM) pulmonary disease and airway dysbiosis is associated with increased inflammation. We examined whether NTM disease was associated with a distinct airway microbiota and immune profile.297 oral wash and induced sputum samples were collected from 106 participants with respiratory symptoms and imaging abnormalities compatible with NTM. Lower airway samples were obtained in 20 participants undergoing bronchoscopy. 16S rRNA gene and nested mycobacteriome sequencing approaches characterised microbiota composition. In addition, inflammatory profiles of lower airway samples were examined.The prevalence of NTM+ cultures was 58%. Few changes were noted in microbiota characteristics or composition in oral wash and sputum samples among groups. Among NTM+ samples, 27% of the lower airway samples were enriched with Mycobacterium A mycobacteriome approach identified Mycobacterium in a greater percentage of samples, including some nonpathogenic strains. In NTM+ lower airway samples, taxa identified as oral commensals were associated with increased inflammatory biomarkers.The 16S rRNA gene sequencing approach is not sensitive in identifying NTM among airway samples that are culture-positive. However, associations between lower airway inflammation and microbiota signatures suggest a potential role for these microbes in the inflammatory process in NTM disease.


Assuntos
Microbiota , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas/isolamento & purificação , Sistema Respiratório/microbiologia , Idoso , Líquido da Lavagem Broncoalveolar/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Micobactérias não Tuberculosas/genética , Estudos Prospectivos , RNA Ribossômico 16S/genética , Escarro/microbiologia
10.
Thorax ; 72(1): 13-22, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27486204

RESUMO

INTRODUCTION: Azithromycin (AZM) reduces pulmonary inflammation and exacerbations in patients with COPD having emphysema. The antimicrobial effects of AZM on the lower airway microbiome are not known and may contribute to its beneficial effects. Here we tested whether AZM treatment affects the lung microbiome and bacterial metabolites that might contribute to changes in levels of inflammatory cytokines in the airways. METHODS: 20 smokers (current or ex-smokers) with emphysema were randomised to receive AZM 250 mg or placebo daily for 8 weeks. Bronchoalveolar lavage (BAL) was performed at baseline and after treatment. Measurements performed in acellular BAL fluid included 16S rRNA gene sequences and quantity; 39 cytokines, chemokines and growth factors and 119 identified metabolites. The response to lipopolysaccharide (LPS) by alveolar macrophages after ex-vivo treatment with AZM or bacterial metabolites was assessed. RESULTS: Compared with placebo, AZM did not alter bacterial burden but reduced α-diversity, decreasing 11 low abundance taxa, none of which are classical pulmonary pathogens. Compared with placebo, AZM treatment led to reduced in-vivo levels of chemokine (C-X-C) ligand 1 (CXCL1), tumour necrosis factor (TNF)-α, interleukin (IL)-13 and IL-12p40 in BAL, but increased bacterial metabolites including glycolic acid, indol-3-acetate and linoleic acid. Glycolic acid and indol-3-acetate, but not AZM, blunted ex-vivo LPS-induced alveolar macrophage generation of CXCL1, TNF-α, IL-13 and IL-12p40. CONCLUSION: AZM treatment altered both lung microbiota and metabolome, affecting anti-inflammatory bacterial metabolites that may contribute to its therapeutic effects. TRIAL REGISTRATION NUMBER: NCT02557958.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Citocinas/análise , Pulmão/microbiologia , Metaboloma/efeitos dos fármacos , Microbiota/efeitos dos fármacos , RNA Ribossômico 16S/análise , Idoso , Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/microbiologia , Quimiocina CXCL1/análise , Método Duplo-Cego , Feminino , Glicolatos/metabolismo , Humanos , Ácidos Indolacéticos/metabolismo , Inflamação/tratamento farmacológico , Subunidade p40 da Interleucina-12/análise , Interleucina-13/análise , Ácido Linoleico/metabolismo , Macrófagos Alveolares , Masculino , Pessoa de Meia-Idade , Enfisema Pulmonar , Fator de Necrose Tumoral alfa/análise
11.
Res Sq ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38645218

RESUMO

Background: Latent tuberculosis infection (LTBI) is common in people living with HIV (PLHIV) in high TB burden settings. Active TB is associated with specific stool taxa; however, little is known about the stool microbiota and LTBI, including in PLHIV. Method: Within a parent study that recruited adult females with HIV from Cape Town, South Africa into predefined age categories (18-25, 35-60 years), we characterised the stool microbiota of those with [interferon-γ release assay (IGRA)- and tuberculin skin test (TST)-positive] or without (IGRA- and TST- negative) LTBI (n=25 per group). 16S rRNA DNA sequences were analysed using QIIME2, Dirichlet Multinomial Mixtures, DESeq2 and PICRUSt2. Results: No α- or ß-diversity differences occurred by LTBI status; however, LTBI-positives were Faecalibacterium-, Blautia-, Gemmiger-, Bacteroides-enriched and Moryella-, Atopobium-, Corynebacterium-, Streptococcus-depleted. Inferred metagenome data showed LTBI-negative-enriched pathways included several involved in methylglyoxal degradation, L-arginine, putrescine, 4-aminobutanoate degradation and L-arginine and ornithine degradation. Stool from LTBI-positives demonstrated differential taxa abundance based on a quantitative response to antigen stimulation (Acidaminococcus-enrichment and Megamonas-, Alistipes-, and Paraprevotella-depletion associated with higher IGRA or TST responses, respectively). In LTBI-positives, older people had different ß-diversities than younger people whereas, in LTBI-negatives, no differences occurred across age groups. Conclusion: Amongst female PLHIV, those with LTBI had, vs. those without LTBI, Faecalibacterium, Blautia, Gemmiger, Bacteriodes-enriched, which are producers of short chain fatty acids. Taxonomic differences amongst people with LTBI occurred according to quantitative response to antigen stimulation and age. These data enhance our understanding of the microbiome's potential role in LTBI.

12.
Microorganisms ; 12(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38930430

RESUMO

Latent tuberculosis infection (LTBI) is common in people living with HIV (PLHIV) in high-TB-burden settings. Active TB is associated with specific stool taxa; however, little is known about the stool microbiota and LTBI in PLHIV. We characterised the stool microbiota of PLHIV with [interferon-γ release assay (IGRA)- and tuberculin skin test (TST)-positive] or without (IGRA- and TST-negative) LTBI (n = 25 per group). The 16S rRNA DNA sequences were analysed using QIIME2, Dirichlet-Multinomial Mixtures, DESeq2, and PICRUSt2. No α- or ß-diversity differences occurred by LTBI status; however, LTBI-positive people were Faecalibacterium-, Blautia-, Gemmiger-, and Bacteroides-enriched and Moryella-, Atopobium-, Corynebacterium-, and Streptococcus-depleted. Inferred metagenome data showed that LTBI-negative-enriched pathways included several metabolite degradation pathways. Stool from LTBI-positive people demonstrated differential taxa abundance based on a quantitative response to antigen stimulation. In LTBI-positive people, older people had different ß-diversities than younger people, whereas in LTBI-negative people, no differences occurred across age groups. Amongst female PLHIV, those with LTBI were, vs. those without LTBI, Faecalibacterium-, Blautia-, Gemmiger-, and Bacteriodes-enriched, which are producers of short-chain fatty acids. Taxonomic differences amongst people with LTBI occurred according to quantitative response to antigen stimulation and age. These data enhance our understanding of the microbiome's potential role in LTBI.

13.
medRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712063

RESUMO

Background: The microbiome likely plays a role in tuberculosis (TB) pathogenesis. We evaluated the site-of-disease microbiome and predicted metagenome in people with presumptive tuberculous pericarditis, a major cause of mortality, and explored for the first time, the interaction between its association with C-reactive protein (CRP), a potential diagnostic biomarker and the site-of-disease microbiome in extrapulmonary TB. Methods: People with effusions requiring diagnostic pericardiocentesis (n=139) provided background sampling controls and pericardial fluid (PF) for 16S rRNA gene sequencing analysed using QIIME2 and PICRUSt2. Blood was collected to measure CRP. Results: PF from people with definite (dTB, n=91), probable (pTB, n=25), and non- (nTB, n=23) tuberculous pericarditis differed in ß-diversity. dTBs were, vs. nTBs, Mycobacterium-, Lacticigenium-, and Kocuria- enriched. Within dTBs, HIV-positives were Mycobacterium-, Bifidobacterium- , Methylobacterium- , and Leptothrix -enriched vs. HIV-negatives and HIV-positive dTBs on ART were Mycobacterium - and Bifidobacterium -depleted vs. those not on ART. Compared to nTBs, dTBs exhibited short-chain fatty acid (SCFA) and mycobacterial metabolism microbial pathway enrichment. People with additional non-pericardial involvement had differentially PF taxa (e.g., Mycobacterium -enrichment and Streptococcus -depletion associated with pulmonary infiltrates). Mycobacterium reads were in 34% (31/91), 8% (2/25) and 17% (4/23) of dTBs, pTBs, and nTBs, respectively. ß-diversity differed between patients with CRP above vs. below the median value ( Pseudomonas -depleted). There was no correlation between enriched taxa in dTBs and CRP. Conclusions: PF is compositionally distinct based on TB status, HIV (and ART) status and dTBs are enriched in SCFA-associated taxa. The clinical significance of these findings, including mycobacterial reads in nTBs and pTBs, requires evaluation.

14.
Sci Rep ; 13(1): 2229, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755121

RESUMO

Malignant pleural effusions (MPE) complicate malignancies and portend worse outcomes. MPE is comprised of various components, including immune cells, cancer cells, and cell-free DNA/RNA. There have been investigations into using these components to diagnose and prognosticate MPE. We hypothesize that the microbiome of MPE is unique and may be associated with diagnosis and prognosis. We compared the microbiota of MPE against microbiota of pleural effusions from non-malignant and paramalignant states. We collected a total of 165 pleural fluid samples from 165 subjects; Benign (n = 16), Paramalignant (n = 21), MPE-Lung (n = 57), MPE-Other (n = 22), and Mesothelioma (n = 49). We performed high throughput 16S rRNA gene sequencing on pleural fluid samples and controls. We showed that there are compositional differences among pleural effusions related to non-malignant, paramalignant, and malignant disease. Furthermore, we showed differential enrichment of bacterial taxa within MPE depending on the site of primary malignancy. Pleural fluid of MPE-Lung and Mesothelioma were associated with enrichment with oral and gut bacteria that are commonly thought to be commensals, including Rickettsiella, Ruminococcus, Enterococcus, and Lactobacillales. Mortality in MPE-Lung is associated with enrichment in Methylobacterium, Blattabacterium, and Deinococcus. These observations lay the groundwork for future studies that explore host-microbiome interactions and their influence on carcinogenesis.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Microbiota , Derrame Pleural Maligno , Derrame Pleural , Humanos , RNA Ribossômico 16S/genética , Derrame Pleural Maligno/diagnóstico , Mesotelioma/diagnóstico , Mesotelioma/patologia , Biomarcadores , Derrame Pleural/diagnóstico , Prognóstico , Microbiota/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/complicações
15.
Sci Rep ; 11(1): 8966, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903700

RESUMO

Since alterations in the intestinal microbiota may induce systemic inflammation and polarization of macrophages to the M1 state, the microbiome role in atherosclerosis, an M1-driven disease, requires evaluation. We aimed to determine if antibiotic (Abx) induced alterations to the intestinal microbiota interferes with atherosclerotic plaque inflammation resolution after lipid-lowering in mice. Hyperlipidemic Apoe-/- mice were fed a western diet to develop aortic atherosclerosis with aortas then transplanted into normolipidemic wild-type (WT) mice to model clinically aggressive lipid management and promote atherosclerosis inflammation resolution. Gut microbial composition pre and post-transplant was altered via an enteral antibiotic or not. Post aortic transplant, after Abx treatment, while plaque size did not differ, compared to Apoe-/- mice, Abx- WT recipient mice had a 32% reduction in CD68-expressing cells (p = 0.02) vs. a non-significant 12% reduction in Abx+ WT mice. A trend toward an M1 plaque CD68-expresing cell phenotype was noted in Abx+ mice. By 16S rRNA sequence analysis, the Abx+ mice had reduced alpha diversity and increased Firmicutes/Bacteroidetes relative abundance ratio with a correlation between gut Firmicutes abundance and plaque CD68-expressing cell content (p < 0.05). These results indicate that in a murine atherosclerotic plaque inflammation resolution model, antibiotic-induced microbiome perturbation may blunt the effectiveness of lipid-lowering to reduce the content of plaque inflammatory CD68-expressing cells.


Assuntos
Aterosclerose , Bacteroidetes , Firmicutes , Microbioma Gastrointestinal/imunologia , Placa Aterosclerótica , Animais , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/microbiologia , Bacteroidetes/genética , Bacteroidetes/imunologia , Modelos Animais de Doenças , Firmicutes/genética , Firmicutes/imunologia , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Camundongos , Camundongos Knockout para ApoE , Placa Aterosclerótica/genética , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/microbiologia
16.
EBioMedicine ; 67: 103374, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33975252

RESUMO

BACKGROUND: The relationship between tuberculosis (TB), one of the leading infectious causes of death worldwide, and the microbiome, which is critical for health, is poorly understood. METHODS: To identify potential microbiome-host interactions, profiling of the oral, sputum and stool microbiota [n = 58 cases, n = 47 culture-negative symptomatic controls (SCs)] and whole blood transcriptome were done in pre-treatment presumptive pulmonary TB patients. This was a cross-sectional study. Microbiota were also characterised in close contacts of cases (CCCs, n = 73) and close contacts of SCs (CCSCs, n = 82) without active TB. FINDINGS: Cases and SCs each had similar α- and ß-diversities in oral washes and sputum, however, ß-diversity differed in stool (PERMANOVA p = 0•035). Cases were enriched with anaerobes in oral washes, sputum (Paludibacter, Lautropia in both) and stool (Erysipelotrichaceae, Blautia, Anaerostipes) and their stools enriched in microbial genes annotated as amino acid and carbohydrate metabolic pathways. In pairwise comparisons with their CCCs, cases had Megasphaera-enriched oral and sputum microbiota and Bifidobacterium-, Roseburia-, and Dorea-depleted stools. Compared to their CCSCs, SCs had reduced α-diversities and many differential taxa per specimen type. Cases differed transcriptionally from SCs in peripheral blood (PERMANOVA p = 0•001). A co-occurrence network analysis showed stool taxa, Erysipelotrichaceae and Blautia, to negatively co-correlate with enriched "death receptor" and "EIF2 signalling" pathways whereas Anaerostipes positively correlated with enriched "interferon signalling", "Nur77 signalling" and "inflammasome" pathways; all of which are host pathways associated with disease severity. In contrast, none of the taxa enriched in SCs correlated with host pathways. INTERPRETATION: TB-specific microbial relationships were identified in oral washes, induced sputum, and stool from cases before the confounding effects of antibiotics. Specific anaerobes in cases' stool predict upregulation of pro-inflammatory immunological pathways, supporting the gut microbiota's role in TB. FUNDING: European & Developing Countries Clinical Trials Partnership, South African-Medical Research Council, National Institute of Allergy and Infectious Diseases.


Assuntos
Microbioma Gastrointestinal , Inflamassomos/metabolismo , Interferons/metabolismo , Tuberculose Pulmonar/microbiologia , Adulto , Bactérias Anaeróbias/patogenicidade , Feminino , Humanos , Inflamassomos/genética , Interferons/genética , Masculino , Transdução de Sinais , Transcriptoma , Tuberculose Pulmonar/metabolismo , Regulação para Cima
17.
Cancer Discov ; 11(2): 293-307, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33177060

RESUMO

In lung cancer, enrichment of the lower airway microbiota with oral commensals commonly occurs, and ex vivo models support that some of these bacteria can trigger host transcriptomic signatures associated with carcinogenesis. Here, we show that this lower airway dysbiotic signature was more prevalent in the stage IIIB-IV tumor-node-metastasis lung cancer group and is associated with poor prognosis, as shown by decreased survival among subjects with early-stage disease (I-IIIA) and worse tumor progression as measured by RECIST scores among subjects with stage IIIB-IV disease. In addition, this lower airway microbiota signature was associated with upregulation of the IL17, PI3K, MAPK, and ERK pathways in airway transcriptome, and we identified Veillonella parvula as the most abundant taxon driving this association. In a KP lung cancer model, lower airway dysbiosis with V. parvula led to decreased survival, increased tumor burden, IL17 inflammatory phenotype, and activation of checkpoint inhibitor markers. SIGNIFICANCE: Multiple lines of investigation have shown that the gut microbiota affects host immune response to immunotherapy in cancer. Here, we support that the local airway microbiota modulates the host immune tone in lung cancer, affecting tumor progression and prognosis.See related commentary by Zitvogel and Kroemer, p. 224.This article is highlighted in the In This Issue feature, p. 211.


Assuntos
Adenocarcinoma/mortalidade , Disbiose/complicações , Neoplasias Pulmonares/mortalidade , Adenocarcinoma/complicações , Adenocarcinoma/microbiologia , Adenocarcinoma/secundário , Animais , Estudos de Coortes , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/microbiologia , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , Microbiota , Metástase Neoplásica , Estadiamento de Neoplasias , New York , Modelos de Riscos Proporcionais , Análise de Sobrevida
18.
Nat Microbiol ; 6(10): 1245-1258, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34465900

RESUMO

Respiratory failure is associated with increased mortality in COVID-19 patients. There are no validated lower airway biomarkers to predict clinical outcome. We investigated whether bacterial respiratory infections were associated with poor clinical outcome of COVID-19 in a prospective, observational cohort of 589 critically ill adults, all of whom required mechanical ventilation. For a subset of 142 patients who underwent bronchoscopy, we quantified SARS-CoV-2 viral load, analysed the lower respiratory tract microbiome using metagenomics and metatranscriptomics and profiled the host immune response. Acquisition of a hospital-acquired respiratory pathogen was not associated with fatal outcome. Poor clinical outcome was associated with lower airway enrichment with an oral commensal (Mycoplasma salivarium). Increased SARS-CoV-2 abundance, low anti-SARS-CoV-2 antibody response and a distinct host transcriptome profile of the lower airways were most predictive of mortality. Our data provide evidence that secondary respiratory infections do not drive mortality in COVID-19 and clinical management strategies should prioritize reducing viral replication and maximizing host responses to SARS-CoV-2.


Assuntos
Líquido da Lavagem Broncoalveolar/microbiologia , COVID-19/terapia , Respiração Artificial , SARS-CoV-2/patogenicidade , Imunidade Adaptativa , Adulto , Idoso , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Carga Bacteriana , Líquido da Lavagem Broncoalveolar/imunologia , Líquido da Lavagem Broncoalveolar/virologia , COVID-19/imunologia , COVID-19/microbiologia , COVID-19/mortalidade , Estado Terminal , Feminino , Hospitalização , Humanos , Imunidade Inata , Masculino , Microbiota , Pessoa de Meia-Idade , Razão de Chances , Prognóstico , Estudos Prospectivos , Sistema Respiratório/imunologia , Sistema Respiratório/microbiologia , Sistema Respiratório/virologia , SARS-CoV-2/imunologia , Carga Viral
19.
medRxiv ; 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33655261

RESUMO

Mortality among patients with COVID-19 and respiratory failure is high and there are no known lower airway biomarkers that predict clinical outcome. We investigated whether bacterial respiratory infections and viral load were associated with poor clinical outcome and host immune tone. We obtained bacterial and fungal culture data from 589 critically ill subjects with COVID-19 requiring mechanical ventilation. On a subset of the subjects that underwent bronchoscopy, we also quantified SARS-CoV-2 viral load, analyzed the microbiome of the lower airways by metagenome and metatranscriptome analyses and profiled the host immune response. We found that isolation of a hospital-acquired respiratory pathogen was not associated with fatal outcome. However, poor clinical outcome was associated with enrichment of the lower airway microbiota with an oral commensal ( Mycoplasma salivarium ), while high SARS-CoV-2 viral burden, poor anti-SARS-CoV-2 antibody response, together with a unique host transcriptome profile of the lower airways were most predictive of mortality. Collectively, these data support the hypothesis that 1) the extent of viral infectivity drives mortality in severe COVID-19, and therefore 2) clinical management strategies targeting viral replication and host responses to SARS-CoV-2 should be prioritized.

20.
J Thromb Haemost ; 18(7): 1773-1782, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32227586

RESUMO

BACKGROUND: Platelets are effector cells of the innate and adaptive immune system; however, understanding their role during inflammation-driven pathologies can be challenging due to several drawbacks associated with current platelet depletion methods. The generation of antisense oligonucleotides (ASOs) directed to thrombopoietin (Tpo) mRNA represents a novel method to reduce circulating platelet count. OBJECTIVE: To understand if Tpo-targeted ASO treatment represents a viable strategy to specifically reduce platelet count in mice. METHODS: Female and male mice were treated with TPO-targeted ASOs and platelet count and function was assessed, in addition to circulating blood cell counts and hematopoietic stem and progenitor cells. The utility of the platelet-depletion strategy was assessed in a murine model of lower airway dysbiosis. RESULTS AND CONCLUSIONS: Herein, we describe how in mice, ASO-mediated silencing of hepatic TPO expression reduces platelet, megakaryocyte, and megakaryocyte progenitor count, without altering platelet activity. TPO ASO-mediated platelet depletion can be achieved acutely and sustained chronically in the absence of adverse bleeding. TPO ASO-mediated platelet depletion allows for the reintroduction of new platelets, an advantage over commonly used antibody-mediated depletion strategies. Using a murine model of lung inflammation, we demonstrate that platelet depletion, induced by either TPO ASO or anti-CD42b treatment, reduces the accumulation of inflammatory immune cells, including monocytes and macrophages, in the lung. Altogether, we characterize a new platelet depletion method that can be sustained chronically and allows for the reintroduction of new platelets highlighting the utility of the TPO ASO method to understand the role of platelets during chronic immune-driven pathologies.


Assuntos
Plaquetas , Trombopoetina , Animais , Feminino , Masculino , Megacariócitos , Camundongos , Oligonucleotídeos Antissenso , Contagem de Plaquetas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa