Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nature ; 586(7829): 390-394, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057223

RESUMO

Owing to its high thermal and electrical conductivities, its ductility and its overall non-toxicity1-3, copper is widely used in daily applications and in industry, particularly in anti-oxidation technologies. However, many widespread anti-oxidation techniques, such as alloying and electroplating1,2, often degrade some physical properties (for example, thermal and electrical conductivities and colour) and introduce harmful elements such as chromium and nickel. Although efforts have been made to develop surface passivation technologies using organic molecules, inorganic materials or carbon-based materials as oxidation inhibitors4-12, their large-scale application has had limited success. We have previously reported the solvothermal synthesis of highly air-stable copper nanosheets using formate as a reducing agent13. Here we report that a solvothermal treatment of copper in the presence of sodium formate leads to crystallographic reconstruction of the copper surface and formation of an ultrathin surface coordination layer. We reveal that the surface modification does not affect the electrical or thermal conductivities of the bulk copper, but introduces high oxidation resistance in air, salt spray and alkaline conditions. We also develop a rapid room-temperature electrochemical synthesis protocol, with the resulting materials demonstrating similarly strong passivation performance. We further improve the oxidation resistance of the copper surfaces by introducing alkanethiol ligands to coordinate with steps or defect sites that are not protected by the passivation layer. We demonstrate that the mild treatment conditions make this technology applicable to the preparation of air-stable copper materials in different forms, including foils, nanowires, nanoparticles and bulk pastes. We expect that the technology developed in this work will help to expand the industrial applications of copper.

2.
J Am Chem Soc ; 146(17): 11782-11791, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639158

RESUMO

Metal halide perovskite materials inherently possess imperfections, particularly under nonequilibrium conditions, such as exposure to light or heat. To tackle this challenge, we introduced stearate ligand-capped nickel oxide (NiOx), a redox-sensitive metal oxide with variable valence, into perovskite intermediate films. The integration of NiOx improved the efficiency and stability of perovskite solar cells (PSCs) by offering multifunctional roles: (1) chemical passivation for ongoing defect repair, (2) energetic passivation to bolster defect tolerance, and (3) field-effect passivation to mitigate charge accumulation. Employing a synergistic approach that tailored these three passivation mechanisms led to a substantial increase in the devices' efficiencies. The target cell (0.12 cm2) and module (18 cm2) exhibited efficiencies of 24.0 and 22.9%, respectively. Notably, the encapsulated modules maintained almost 100 and 87% of the initial efficiencies after operating for 1100 h at the maximum power point (60 °C, 50% RH) and 2000 h of damp-heat testing (85 °C, 85% RH), respectively. Outdoor real-time tests further validated the commercial viability of the NiOx-assisted PSMs. The proposed passivation strategy provides a practical and uncomplicated approach for fabricating high-efficiency and stable photovoltaics.

3.
J Am Chem Soc ; 145(36): 20081-20087, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37639328

RESUMO

Developing cost-effective metal electrodes is essential for reducing the overall cost of perovskite solar cells (PSCs). Although copper is highly conductive and economical, it is rarely used as a positive electrode in efficient n-i-p PSCs due to its unmatched Fermi level and low oxidation threshold. We report herein that modification for the inner surface of electrodes using mercaptopyridine-based molecules readily tunes the electronic and chemical properties of copper, which has been achieved by fine-tuning the substituents of mercaptopyridines. The systematic adjustment for the Fermi level and oxidation potential of copper facilitates interfacial hole extraction and enhances the oxidation resistance of copper electrodes, which enables pure copper electrodes to be used in high-performance n-i-p PSCs with different hole transport materials. The resulting PSCs with copper electrodes display excellent power conversion efficiency and long-term stability, even comparable to those of the gold electrodes, showing great potential in the manufacturing and commercialization of PSCs.

4.
J Am Chem Soc ; 143(15): 5855-5866, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33835780

RESUMO

Perovskite solar cells (PSCs) with organic hole transporting layers (o-HTLs) have been widely studied due to their convenient solution processing, but it remains a big challenge to improve the hole mobilities of commercially available organic hole transporting materials without ion doping while maintaining the stability of PSCs. In this work, we demonstrated that the introduction of perovskite quantum dots (QDs) as interlayers between perovskite layers and dopant-free o-HTLs (P3HT, PTAA, Spiro-OMeTAD) resulted in a significantly enhanced performance of PSCs. The universal role of QDs in improving the efficiency and stability of PSCs was validated, exceeding that of lithium doping. After a deep examination of the mechanism, QD interlayers provided the multifunctional roles as follows: (1) passivating the perovskite surface to reduce the overall amount of trap states; (2) promoting hole extraction from perovskite to dopant-free o-HTLs by forming cascade energy levels; (3) improving hole mobilities of dopant-free o-HTLs by regulating their polymer/molecule orientation. What is more, the thermal/moisture/light stabilities of dopant-free o-HTLs-based PSCs were greatly improved with QD interlayers. Finally, we demonstrated the reliability of the QD interlayers by fabricating large-area solar modules with dopant-free o-HTLs, showing great potential in commercial usage.

5.
J Am Chem Soc ; 143(28): 10624-10632, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34236187

RESUMO

Owing to the ionic nature of lead halide perovskites, their halide-terminated surface is unstable under light-, thermal-, moisture-, or electric-field-driven stresses, resulting in the formation of unfavorable surface defects. As a result, nonradiative recombination generally occurs on perovskite films and deteriorates the efficiency, stability, and hysteresis performances of perovskite solar cells (PSCs). Here, a surface iodide management strategy was developed through the use of cesium sulfonate to stabilize the perovskite surface. It was found that the pristine surface of common perovskite was terminated with extra iodide, that is, with an I-/Pb2+ ratio larger than 3, explaining the origination of surface-related problems. Through post-treatment of perovskite films by cesium sulfonate, the extra iodide on the surface was facilely removed and the as-exposed Pb2+ cations were chelated with sulfonate anions while maintaining the original 3D perovskite structure. Such iodide replacement and lead chelating coordination on perovskite could reduce the commonly existing surface defects and nonradiative recombination, enabling assembled PSCs with an efficiency of 22.06% in 0.12 cm2 cells and 18.1% in 36 cm2 modules with high stability.

6.
Microvasc Res ; 138: 104207, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34119535

RESUMO

INTRODUCTION: Choroidal neovascularization (CNV) is the main pathological change of wet age-related macular degeneration. Anti-VEGF drugs are the most commonly used treatment for CNV. The biggest drawback of anti-VEGF drugs is the recurrence of CNV, which requires repeated therapy several times. Autophagy activation may be involved in reducing the therapeutic effect of anti-VEGF drugs. So, this study aims to elucidate the effect and mechanism of anti-VEGF drugs on endothelial autophagy and neovascularization in vitro. METHODS: RF/6A cells were randomly divided into five groups: The control group, hypoxia group (1% O2, 5% CO2, 94% N2), anti-VEGF group (group1: Ranibizumab 100 µg/ml; group2: Aflibercept, 400 µg/ml; group3: Conbercept, 100 µg/ml). Autophagy-related proteins were examined by Western blot. RFP-GFP-LC3 was used to detect autophagy and autophagic flow. Subsequently, we used autophagy inhibitors (3-MA or CQ) to inhibit Conbercept induced autophagy and to observe its effect on angiogenesis in vitro. Proliferation, migration, and tube formation of endothelial cells can be used to study neovascularization in vitro. In this research, the CCK-8 assay was used to detect cell proliferation. Cell migration and tube formation were assessed by wound assay and matrix method, respectively. Flow cytometry and Tunel were used to detect cell apoptosis. Finally, the mechanism of Conbercept activated autophagy was studied. Western blot was used to detect the expression of p53 and DRAM (damage-regulated autophagy modulator), upstream activators of autophagy. RESULTS: The protein levels of Beclin-1 and LC3-2/1 in Ranibizumab and Conbercept groups were significantly higher than in the hypoxia group(P < 0.05). While the expression of P62 was decreased (P < 0.05). The autophagic flux was showed the same results. However, Aflibercept showed the opposite effect on autophagy. Compared with the Conbercept group, autophagy inhibitor 3-MA or CQ can further inhibit cell proliferation and promotes cell apoptosis (P < 0.05). Conbercept significantly inhibited cell migration compared with the hypoxia group (633.08 ± 72.52 vs. 546.33 ± 24.61), while the autophagy inhibitor group (3-MA or CQ) had a more obvious inhibition effect (309.75 ± 86.36 and 263.33 ± 68.67) (P < 0.05). For tube formation, the number of tube formation was decreased significantly in the Conbercept group (32.00 ± 2.00) compared to the hypoxia group (39.00 ± 1.53) and even further reduced in 3-MA or CQ group (24.00 ± 3.61, 20.00 ± 2.65). The length of master segments in the hypoxia group was 15,668.00 ± 894.11. It was decreased in Conbercept (13,885.34 ± 730.03). In 3-MA or CQ group, the length of master segments dropped further (11,997.00 ± 433.66, 10,617.67 ± 543.21). Compare with the hypoxia group, the expression P53 and DRAM were increased in the Conbercept group (P < 0.05). Autophagy-related proteins LC-3, Beclin-1, and DRAM were inhibited by P53 inhibitor Pifithrin-α (PFTα) (P < 0.05). CONCLUSION: Ranibizumab and Conbercept can trigger the autophagy of vascular endothelial cells while Aflibercept can inhibit it. The combination of Conbercept and autophagy inhibitor can significantly inhibit the formation of angiogenesis in vitro. The mechanism of autophagy activation is related to the activation of the p53/DRAM pathway.


Assuntos
Inibidores da Angiogênese/farmacologia , Autofagia/efeitos dos fármacos , Neovascularização de Coroide/tratamento farmacológico , Células Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Ranibizumab/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Macaca mulatta , Receptores de Fatores de Crescimento do Endotélio Vascular , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
Angew Chem Int Ed Engl ; 60(15): 8526-8531, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33475225

RESUMO

An organic-inorganic hybrid electrolyte based on a cyclic Ti-oxo cluster as the inorganic core and naphthalene-based organic ammonium bromide salts as the electrolyte was developed with easy synthesis and low cost. The new hybrid electrolyte exhibits excellent solubility in methanol, aligned work function, good conductivity, and amorphous state in thin film, enabling its successful application as a cathode interlayer in organic solar cells with a high power conversion efficiency of 17.19 %. This work demonstrates that the hybrid electrolytes are a new kind of semiconductor, exhibiting promising applications in organic electronics.

8.
J Am Chem Soc ; 142(13): 6149-6157, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32159948

RESUMO

Perovskite films prepared with CH3NH2 molecules under ambient conditions have led to rapid fabrication of perovskite solar cells (PSCs), but there remains a lack of mechanistic studies and inconsistencies with operability in their production. Here the crystal structure of CH3NH2-CH3NH3PbI3 was analyzed to involve hydrogen bonds (CH3NH2···CH3NH3+) and has guided the facile, reproducible preparation of high-quality perovskite films under ambient conditions. Hydrogen bonds within CH3NH2···CH3NH3+ dimers were found in the CH3NH2-CH3NH3PbI3 intermediates, accompanied by 1D-PbI3- chains (δ-phase). The weakly hydrogen-bonded CH3NH2 molecules were easily released from the CH3NH2-CH3NH3PbI3 intermediates, contributing to rapid, spontaneous phase transition from 1D-PbI3- (δ-phase) to 3D-PbI3- (α-phase). Further introduction of CH3NH3Cl into the CH3NH2-CH3NH3PbI3 intermediates led to interruption of 1D-PbI3- transition into 0D-Pb2I9-xClx5-(0 < x < 6), adjusting the phase transition route toward 3D-PbI3-. On the basis of the above understanding, CH3NH2 solution in ethanol and CH3NH3Cl were used for precursors and a best efficiency of 20.3% in PSCs was achieved. Large-scale modules (12 cm2 aperture area) fabricated by a dip-coating technology exhibited an efficiency up to 16.0% and outstanding stability over 10 000 s under continuous output. The developed preparation method of perovskite precursors and insightful research into the methylamine-dimer-induced phase transition mechanism have enabled the production of high-quality perovskite films with robust operability, showing great potential for large-scale commercialization.

9.
J Am Chem Soc ; 141(1): 541-547, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30525560

RESUMO

Perovskite solar cells (PSCs) have reached certified efficiencies of up to 23.7% but suffered from frailness and instability when exposed to ambient atmosphere. Zinc oxide (ZnO), when used as electron transport layer (ETL) on PSCs, gives rise to excellent electronic, optic, and photonic properties, yet the Lewis basic nature of ZnO surface leads to deprotonation of the perovskite layer, resulting in serious degradation of PSCs using ZnO as ETL. Here, we report a simple but effective strategy to convert ZnO surface into ZnS at the ZnO/perovskite interface by sulfidation. The sulfide on ZnO-ZnS surface binds strongly with Pb2+ and creates a novel pathway of electron transport to accelerate electron transfer and reduce interfacial charge recombination, yielding a champion efficiency of 20.7% with improved stability and no appreciable hysteresis. The model devices modified with sulfide maintained 88% of their initial performance for 1000 h under storage condition and 87% for 500 h under UV radiation. ZnS is demonstrated to act as both a cascade ETL and a passivating layer for enhancing the performance of PSCs.

10.
J Am Chem Soc ; 141(35): 13977-13986, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31436416

RESUMO

The chemical reactivity and/or the diffusion of Ag atoms or ions during thermal processing can cause irreversible structural damage, hindering the application of Ag nanowires (NWs) in transparent conducting films and other applications that make use of the material's nanoscale properties. Here, we describe a simple and effective method for growing monolayer SnO2 on the surface of Ag nanowires under ambient conditions, which protects the Ag nanowires from chemical and structural damage. Our results show that Sn2+ and Ag atoms undergo a redox reaction in the presence of water. First-principle simulations suggest a reasonable mechanism for SnO2 formation, showing that the interfacial polarization of the silver by the SnO2 can significantly reduce the affinity of Ag to O2, thereby greatly reducing the oxidation of the silver. The corresponding values (for example, before coating: 17.2 Ω/sq at 86.4%, after coating: 19.0 Ω/sq at 86.6%) show that the deposition of monolayer SnO2 enables the preservation of high transparency and conductivity of Ag. In sharp contrast to the large-scale degradation of pure Ag-NW films including the significant reduction of its electrical conductivity when subjected to a series of harsh corrosion environments, monolayer SnO2 coated Ag-NW films survive structurally and retain their electrical conductivity. Consequently, the thermal, electrical, and chemical stability properties we report here, and the simplicity of the technology used to achieve them, are among the very best reported for transparent conductor materials to date.

11.
Angew Chem Int Ed Engl ; 57(30): 9475-9479, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-29785780

RESUMO

Electrochemical conversion of CO2 into fuels using electricity generated from renewable sources helps to create an artificial carbon cycle. However, the low efficiency and poor stability hinder the practical use of most conventional electrocatalysts. In this work, a 2D hierarchical Pd/SnO2 structure, ultrathin Pd nanosheets partially capped by SnO2 nanoparticles, is designed to enable multi-electron transfer for selective electroreduction of CO2 into CH3 OH. Such a structure design not only enhances the adsorption of CO2 on SnO2 , but also weakens the binding strength of CO on Pd due to the as-built Pd-O-Sn interfaces, which is demonstrated to be critical to improve the electrocatalytic selectivity and stability of Pd catalysts. This work provides a new strategy to improve electrochemical performance of metal-based catalysts by creating metal oxide interfaces for selective electroreduction of CO2 .

12.
Nat Mater ; 15(5): 564-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26808458

RESUMO

Tuning the electronic structure of heterogeneous metal catalysts has emerged as an effective strategy to optimize their catalytic activities. By preparing ethylenediamine-coated ultrathin platinum nanowires as a model catalyst, here we demonstrate an interfacial electronic effect induced by simple organic modifications to control the selectivity of metal nanocatalysts during catalytic hydrogenation. This we apply to produce thermodynamically unfavourable but industrially important compounds, with ultrathin platinum nanowires exhibiting an unexpectedly high selectivity for the production of N-hydroxylanilines, through the partial hydrogenation of nitroaromatics. Mechanistic studies reveal that the electron donation from ethylenediamine makes the surface of platinum nanowires highly electron rich. During catalysis, such an interfacial electronic effect makes the catalytic surface favour the adsorption of electron-deficient reactants over electron-rich substrates (that is, N-hydroxylanilines), thus preventing full hydrogenation. More importantly, this interfacial electronic effect, achieved through simple organic modifications, may now be used for the optimization of commercial platinum catalysts.

13.
Angew Chem Int Ed Engl ; 56(28): 8110-8114, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28557263

RESUMO

Janus nanoparticles (JNPs) offer unique features, including the precisely controlled distribution of compositions, surface charges, dipole moments, modular and combined functionalities, which enable excellent applications that are unavailable to their symmetrical counterparts. Assemblies of NPs exhibit coupled optical, electronic and magnetic properties that are different from single NPs. Herein, we report a new class of double-layered plasmonic-magnetic vesicle assembled from Janus amphiphilic Au-Fe3 O4 NPs grafted with polymer brushes of different hydrophilicity on Au and Fe3 O4 surfaces separately. Like liposomes, the vesicle shell is composed of two layers of Au-Fe3 O4 NPs in opposite direction, and the orientation of Au or Fe3 O4 in the shell can be well controlled by exploiting the amphiphilic property of the two types of polymers.


Assuntos
Compostos Férricos/química , Ouro/química , Magnetismo , Nanopartículas Metálicas/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Polímeros/química , Espectroscopia de Prótons por Ressonância Magnética , Análise Espectral Raman , Ressonância de Plasmônio de Superfície , Propriedades de Superfície , Termodinâmica
14.
J Am Chem Soc ; 138(4): 1114-7, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26807600

RESUMO

Plasmonic metal/semiconductor heterostructures show promise for visible-light-driven photocatalysis. Gold nanorods (AuNRs) semi-coated with TiO2 are expected to be ideally structured systems for hydrogen evolution. Synthesizing such structures by wet-chemistry methods, however, has proved challenging. Here we report the bottom-up synthesis of AuNR/TiO2 nanodumbbells (NDs) with spatially separated Au/TiO2 regions, whose structures are governed by the NRs' diameter, and the higher curvature and lower density of CnTAB surfactant at the NRs' tips than on their lateral surfaces, as well as the morphology's dependence on concentration, and alkyl chain length of CnTAB. The NDs show plasmon-enhanced H2 evolution under visible and near-infrared light.

15.
J Am Chem Soc ; 137(31): 9772-5, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26222800

RESUMO

We have developed a facile procedure that can create asymmetrical building blocks by uniformly deforming nanospheres into C(∞v) symmetry at low cost and high quality. Concave polystyrene@carbon (PS@C) core-shell nanospheres were produced by a very simple microwave-assisted alcohol thermal treatment of spherical PS@C nanoparticles. The dimensions and ratio of the concave part can be precisely controlled by temperature and solvents. The concavity is created by varying the alcohol-thermal treatment to tune the swelling properties that lead to the mechanical deformation of the PS@C core-shell structure. The driving force is attributed to the significant volume increase that occurs upon polystyrene core swelling with the incorporation of solvent. We propose a mechanism adapted from published models for the depression of soft capsules. An extrapolation from this model predicts that the rigid shell is used to generate a cavity in the unbuckled shell, which is experimentally confirmed. This swelling and deformation route is flexible and should be applicable to other polymeric nanoparticles to produce asymmetrical nanoparticles.

16.
J Am Chem Soc ; 136(37): 12856-9, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25171506

RESUMO

A facile method has been developed for face-to-face assembly of two-dimensional surfactant-free Pd nanosheets into one-dimensional Pd superlattice nanowires. The length of the Pd nanowires can be well controlled by introducing cations of different concentration and charge density. Our studies reveal that cations with higher charge density have stronger charge-screening ability, and their introduction leads to more positive zeta-potential and decreased electrostatic repulsion between negatively charged Pd nanosheets. Moreover, their surfactant-free feature is of great importance in assembling the Pd nanosheets into superlattice nanowires. While the cations are important for the assembly of Pd nanosheets, the use of poly(vinylpyrrolidone) is necessary to enhance the stability of the assembled superlattice nanowires. The as-assembled segmented Pd nanowires display tunable surface plasmon resonance features and excellent hydrogen-sensing properties.

18.
Analyst ; 139(5): 954-63, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24343373

RESUMO

Because of microbial resistance to conventional antibiotics, there is increasing interest in silver, including silver nanoparticles (nano-Ag), in antimicrobial applications. However, questions remain regarding the relative roles of nano-Ag particles, versus Ag(+) ions released from nano-Ag dissolution, in imparting bacterial toxicity. Here, we developed a novel nano-Ag that, based on its cysteine cap, was expected to dissolve slowly and thus potentially allow for differentiating nanoparticle, versus ionic, effects of Ag. The nano-Ag was systematically tested for its differential toxicity to Escherichia coli and Pseudomonas aeruginosa. Bacterial growth, reactive oxygen species (ROS) generation, particle dissolution, cellular electron transfer activity, and cell membrane damage and potential were evaluated. In minimal growth medium, E. coli and P. aeruginosa growth were slowed at 100 mg L(-1) (0.93 mM) and 5 mg L(-1) (0.046 mM), respectively; P. aeruginosa was completely inhibited at and above 10 mg L(-1) (0.093 mM). For both strains, toxicity was associated with ROS and cell membrane damage. Based on comparisons to AgNO3 exposures, toxicity from nano-Ag was due to Ag(+) ions and not intact nano-Ag, even though nanoparticle dissolution was less than 2% in minimal growth medium. Because of their stability and slow Ag(+) ion release, the cysteine-capped nano-Ag particles here are useful to antimicrobial applications. Additionally, our systematic approach to evaluating toxicity, membrane damage, and ROS generation can be applied with other nanomaterials and bacteria.


Assuntos
Cisteína/toxicidade , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/toxicidade , Relação Dose-Resposta a Droga , Escherichia coli/química , Escherichia coli/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/ultraestrutura , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria Infravermelho/métodos , Espectrofotometria Ultravioleta/métodos
19.
Cryobiology ; 67(2): 170-4, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23846104

RESUMO

Thymomas are the most common tumors of the mediastinum. These tumors often compress vital mediastinal organs and severely impact the quality of life of thymoma patients. To avoid the side effects of chemoradiotherapy, some patients with unresectable malignant thymomas have opted to undergo cryotherapy in our hospital. We reviewed the cryosurgery, nursing and follow-up records of our hospital for the past 8 years, and evaluated the safety and efficiency of cryotherapy in 19 patients with unresectable malignant thymomas. No severe complications involving the vital organs surrounding the tumor occurred during or after cryosurgery. The most common side effect was pleural effusion, which occurred in 11 patients and healed after drainage within 1 week. Cough, mediastinal and pericardial effusions, pneumothorax, mild fever and chest tightness also occurred and resolved 1 week after symptomatic treatment. Since our patients had high KPS scores and mild myasthenia gravis symptoms before the treatment, myasthenia gravis did not occur after the treatment. The progression-free survival of the patients was 14-29 months (median, 18 months), and did not differ between patients with large tumors and those with small tumors (P = 0.6753). In conclusion, cryotherapy is a safe and efficient method for the treatment of unresectable malignant thymoma.


Assuntos
Criocirurgia/métodos , Radioisótopos do Iodo/uso terapêutico , Timoma/terapia , Neoplasias do Timo/terapia , Adulto , Idoso , Criocirurgia/efeitos adversos , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/etiologia , Derrame Pleural/etiologia , Timoma/patologia , Timoma/cirurgia , Timo/patologia , Timo/cirurgia , Neoplasias do Timo/patologia , Neoplasias do Timo/cirurgia , Adulto Jovem
20.
Comput Biol Med ; 166: 107487, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37801918

RESUMO

Deep learning object detection networks require a large amount of box annotation data for training, which is difficult to obtain in the medical image field. The few-shot object detection algorithm is significant for an unseen category, which can be identified and localized with a few labeled data. For medical image datasets, the image style and target features are incredibly different from the knowledge obtained from training on the original dataset. We propose a background suppression attention(BSA) and feature space fine-tuning module (FSF) for this cross-domain situation where there is a large gap between the source and target domains. The background suppression attention reduces the influence of background information in the training process. The feature space fine-tuning module adjusts the feature distribution of the interest features, which helps to make better predictions. Our approach improves detection performance by using only the information extracted from the model without maintaining additional information, which is convenient and can be easily plugged into other networks. We evaluate the detection performance in the in-domain situation and cross-domain situation. In-domain experiments on the VOC and COCO datasets and the cross-domain experiments on the VOC to medical image dataset UriSed2K show that our proposed method effectively improves the few-shot detection performance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa