Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33059369

RESUMO

Human papillomavirus (HPV) integrating into human genome is the main cause of cervical carcinogenesis. HPV integration selection preference shows strong dependence on local genomic environment. Due to this theory, it is possible to predict HPV integration sites. However, a published bioinformatic tool is not available to date. Thus, we developed an attention-based deep learning model DeepHPV to predict HPV integration sites by learning environment features automatically. In total, 3608 known HPV integration sites were applied to train the model, and 584 reviewed HPV integration sites were used as the testing dataset. DeepHPV showed an area under the receiver-operating characteristic (AUROC) of 0.6336 and an area under the precision recall (AUPR) of 0.5670. Adding RepeatMasker and TCGA Pan Cancer peaks improved the model performance to 0.8464 and 0.8501 in AUROC and 0.7985 and 0.8106 in AUPR, respectively. Next, we tested these trained models on independent database VISDB and found the model adding TCGA Pan Cancer performed better (AUROC: 0.7175, AUPR: 0.6284) than the model adding RepeatMasker peaks (AUROC: 0.6102, AUPR: 0.5577). Moreover, we introduced attention mechanism in DeepHPV and enriched the transcription factor binding sites including BHLHA15, CHR, COUP-TFII, DMRTA2, E2A, HIC1, INR, NPAS, Nr5a2, RARa, SCL, Snail1, Sox10, Sox3, Sox4, Sox6, STAT6, Tbet, Tbx5, TEAD, Tgif2, ZNF189, ZNF416 near attention intensive sites. Together, DeepHPV is a robust and explainable deep learning model, providing new insights into HPV integration preference and mechanism. Availability: DeepHPV is available as an open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepHPV.git, Contact: huzheng1998@163.com, liangjiuxing@m.scnu.edu.cn, lizheyzy@163.com.


Assuntos
Alphapapillomavirus , Aprendizado Profundo , Modelos Genéticos , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Integração Viral/genética , Alphapapillomavirus/genética , Alphapapillomavirus/metabolismo , Feminino , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
2.
Bioinformatics ; 37(20): 3405-3411, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34009299

RESUMO

MOTIVATION: Epstein-Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment, which enables the prediction of EBV integration sites. RESULTS: An attention-based deep learning model, DeepEBV, was developed to predict EBV integration sites by learning local genomic features automatically. First, DeepEBV was trained and tested using the data from the dsVIS database. The results showed that DeepEBV with EBV integration sequences plus Repeat peaks and 2-fold data augmentation performed the best on the training dataset. Furthermore, the performance of the model was validated in an independent dataset. In addition, the motifs of DNA-binding proteins could influence the selection preference of viral insertional mutagenesis. Furthermore, the results showed that DeepEBV can predict EBV integration hotspot genes accurately. In summary, DeepEBV is a robust, accurate and explainable deep learning model, providing novel insights into EBV integration preferences and mechanisms. AVAILABILITYAND IMPLEMENTATION: DeepEBV is available as open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepEBV.git. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

3.
BMC Ecol Evol ; 21(1): 138, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233610

RESUMO

BACKGROUND: The hepatitis B virus (HBV) is one of the main causes of viral hepatitis and liver cancer. HBV integration is one of the key steps in the virus-promoted malignant transformation. RESULTS: An attention-based deep learning model, DeepHBV, was developed to predict HBV integration sites. By learning local genomic features automatically, DeepHBV was trained and tested using HBV integration site data from the dsVIS database. Initially, DeepHBV showed an AUROC of 0.6363 and an AUPR of 0.5471 for the dataset. The integration of genomic features of repeat peaks and TCGA Pan-Cancer peaks significantly improved model performance, with AUROCs of 0.8378 and 0.9430 and AUPRs of 0.7535 and 0.9310, respectively. The transcription factor binding sites (TFBS) were significantly enriched near the genomic positions that were considered. The binding sites of the AR-halfsite, Arnt, Atf1, bHLHE40, bHLHE41, BMAL1, CLOCK, c-Myc, COUP-TFII, E2A, EBF1, Erra, and Foxo3 were highlighted by DeepHBV in both the dsVIS and VISDB datasets, revealing a novel integration preference for HBV. CONCLUSIONS: DeepHBV is a useful tool for predicting HBV integration sites, revealing novel insights into HBV integration-related carcinogenesis.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Carcinoma Hepatocelular/genética , DNA Viral , Vírus da Hepatite B/genética , Humanos , Integração Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa