Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Environ Res ; 252(Pt 1): 118860, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582422

RESUMO

The application of antimony sulfide sensors, characterized by their exceptional stability and selectivity, is of emerging interest in detection research, and the integration of graphitized carbon materials is expected to further enhance their electrochemical performance. This study represents a pioneering effort in the synthesis of carbon-doped antimony sulfide materials through the pyrolysis of the mixture of microorganisms and their synthetic antimony sulfide. The prepared materials are subsequently applied to electrochemical sensors for monitoring the highly toxic compounds catechol (CC) and hydroquinone (HQ) in the environment. Via cyclic voltammetry (CV) and impedance testing, we concluded that the pyrolytic product at 700 °C (Sb-700) demonstrated the best electrochemical properties. Differential pulse voltammetry (DPV) revealed impressive separation when utilizing Sb-700/GCE for simultaneous detection of CC and HQ, exhibiting good linearity within the concentration range of 0.1-140 µM. The achieved sensitivities of 24.62 µA µM-1 cm-2 and 22.10 µA µM-1 cm-2 surpassed those of most CC and HQ electrochemical sensors. Meanwhile, the detection limits for CC and HQ were as low as 0.18 µM and 0.16 µM (S/N = 3), respectively. Additional tests confirmed the good selectivity, reproducibility, and long-term stability of Sb-700/GCE, which was effective in detecting CC and HQ in tap water and river water, with recovery rates of 100.7%-104.5% and 96.5%-101.4%, respectively. It provides a method that combines green microbial synthesis and simple pyrolysis for the preparation of electrode materials in CC and HQ electrochemical sensors, and also offers a new perspective for the application of microbial synthesized materials.


Assuntos
Antimônio , Catecóis , Técnicas Eletroquímicas , Hidroquinonas , Pirólise , Hidroquinonas/química , Hidroquinonas/análise , Catecóis/análise , Catecóis/química , Antimônio/química , Antimônio/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Sulfetos/química
2.
J Environ Manage ; 362: 121325, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38824895

RESUMO

Fluidized Bed Fenton (FBF) technology, a fusion of the Fenton method and fluidized bed reactor, has emerged as a superior alternative to conventional Fenton technology for treating organic industrial wastewater. This innovative approach has garnered significant attention from researchers in recent years. While earlier studies primarily focused on pollutant degradation in simulated wastewater and catalyst development, there has been a growing interest in examining the alterations in mass or heat transfer performance attributed to fluidized beds. This paper explores the factors that contribute to the effectiveness of Fluidized Bed Fenton technology in efficiently degrading various challenging organic pollutants, while also reducing iron sludge production and expanding the applicable pH range, through an analysis of reaction kinetics. Meanwhile, combined with the related work of fluid dynamics, the research related to mass and heat transfer inside the reactor of Fluidized Bed Fenton technology is summarized, and it is proposed that the use of computers to establish a suitable model of Fluidized Bed Fenton and solve it with the assistance of computational fluid dynamics (CFD) and other software will help to further explore the process of mass and heat transfer inside the fluidized bed, which will provide the basis for the future of the Fluidized Bed Fenton from the laboratory to the actual industrial application.


Assuntos
Ferro , Águas Residuárias , Águas Residuárias/química , Ferro/química , Eliminação de Resíduos Líquidos/métodos , Peróxido de Hidrogênio/química , Hidrodinâmica , Cinética , Temperatura Alta , Poluentes Químicos da Água/química
3.
J Transl Med ; 21(1): 532, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550679

RESUMO

BACKGROUND: Glioblastoma (GBM) is a brain tumor with the highest level of malignancy and the worst prognosis in the central nervous system. Mitochondrial metabolism plays a vital role in the occurrence and development of cancer, which provides critical substances to support tumor anabolism. Mito-LND is a novel small-molecule inhibitor that can selectively inhibit the energy metabolism of tumor cells. However, the therapeutic effect of Mito-LND on GBM remains unclear. METHODS: The present study evaluated the inhibitory effect of Mito-LND on the growth of GBM cells and elucidated its potential mechanism. RESULTS: The results showed that Mito-LND could inhibit the survival, proliferation and colony formation of GBM cells. Moreover, Mito-LND induced cell cycle arrest and apoptosis. Mechanistically, Mito-LND inhibited the activity of mitochondrial respiratory chain complex I and reduced mitochondrial membrane potential, thus promoting ROS generation. Importantly, Mito-LND could inhibit the malignant proliferation of GBM by blocking the Raf/MEK/ERK signaling pathway. In vivo experiments showed that Mito-LND inhibited the growth of GBM xenografts in mice and significantly prolonged the survival time of tumor-bearing mice. CONCLUSION: Taken together, the current findings support that targeting mitochondrial metabolism may be as a potential and promising strategy for GBM therapy, which will lay the theoretical foundation for further clinical trials on Mito-LND in the future.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Linhagem Celular Tumoral , Transdução de Sinais , Apoptose , Neoplasias Encefálicas/patologia , Proliferação de Células
4.
Cell Commun Signal ; 21(1): 363, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38115126

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a devastating disease that lacks effective drugs for targeted therapy. Previously, we found that the third-generation epidermal growth factor receptor (EGFR) inhibitor AZD-9291 persistently blocked the activation of the ERK pathway but had no inhibitory effect on the phosphoinositide 3-kinase (PI3K)/Akt pathway. Given that the PI3K inhibitor GDC-0084 is being evaluated in phase I/II clinical trials of GBM treatment, we hypothesized that combined inhibition of the EGFR/ERK and PI3K/Akt pathways may have a synergistic effect in the treatment of GBM. METHODS: The synergistic effects of cotreatment with AZD-9291 and GDC-0084 were validated using cell viability assays in GBM and primary GBM cell lines. Moreover, the underlying inhibitory mechanisms were assessed through colony formation, EdU proliferation, and cell cycle assays, as well as RNA-seq analyses and western blot. The therapeutic effects of the drug combination on tumor growth and survival were investigated in mice bearing tumors using subcutaneously or intracranially injected LN229 xenografts. RESULTS: Combined treatment with AZD-9291 and GDC-0084 synergistically inhibited the proliferation and clonogenic survival, as well as induced cell cycle arrest of GBM cells and primary GBM cells, compared to monotherapy. Moreover, AZD-9291 plus GDC-0084 combination therapy significantly inhibited the growth of subcutaneous tumors and orthotopic brain tumor xenografts, thus prolonging the survival of tumor-bearing mice. More importantly, the combination of AZD-9291 and GDC-0084 simultaneously blocked the activation of the EGFR/MEK/ERK and PI3K/AKT/mTOR signaling pathways, thereby exerting significant antitumor activity. CONCLUSION: Our findings demonstrate that the combined blockade of the EGFR/MEK/ERK and PI3K/AKT/mTOR pathways is more effective against GBM than inhibition of each pathway alone, both in vitro and in vivo. Our results suggest that AZD-9291 combined with GDC-0084 may be considered as a potential treatment strategy in future clinical trials. Video Abstract.


Assuntos
Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Receptores ErbB/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Proliferação de Células
5.
Mol Cell Biochem ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064139

RESUMO

The morbidity and mortality rates of cardiovascular diseases (CVDs) are increasing; thus, they impose substantial health and economic burdens worldwide, and effective interventions are needed for immediate resolution of this issue. Recent studies have suggested that noncoding RNAs (ncRNAs) play critical roles in the occurrence and development of CVDs and are potential therapeutic targets and novel biomarkers for these diseases. Newly discovered modes of cell death, including necroptosis, pyroptosis, apoptosis, autophagy-dependent cell death and ferroptosis, also play key roles in CVD progression. However, ferroptosis, which differs from the other aforementioned forms of regulated cell death in terms of cell morphology, biochemistry and inhereditability, is a unique iron-dependent mode of nonapoptotic cell death induced by abnormal iron metabolism and excessive accumulation of iron-dependent lipid peroxides and reactive oxygen species (ROS). Increasing evidence has confirmed that ncRNA-mediated ferroptosis is involved in regulating tissue homeostasis and CVD-related pathophysiological conditions, such as cardiac ischemia/reperfusion (I/R) injury, myocardial infarction (MI), atrial fibrillation (AF), cardiomyopathy and heart failure (HF). In this review, we summarize the underlying mechanism of ferroptosis, discuss the pathophysiological effects of ncRNA-mediated ferroptosis in CVDs and provide ideas for effective therapeutic strategies.

6.
J Environ Manage ; 346: 118942, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37716170

RESUMO

The specialized wastewater treatment plants for the chemical industry are rapidly developed in China and many other countries. But there is a common bottleneck in that the toxic pollutants in chemical wastewater often cause shock impacts on biological nitrogen removal systems, which directly affects the stability and cost of operation. As the research on nitrification inhibition characteristics is not sufficient till now, there is a great lack of theoretical guidance on the control of the inhibition. This study investigated the response of nitrifying activated sludge to chlorophenols (CPs) inhibition in terms of metabolism disorder and oxidative stress. At the initial stage of reaction (i.e., 1 h), reactive oxygen species (ROS)-induced membrane damage which might account for declining nitrification performance. Simultaneously excessive extracellular polymeric substances (EPS) were secreted to alleviate oxidative stress injury and protected microorganisms to some extent. In particular tyrosine-like substances in LB-EPS with a Fmax increase of 242.30% were confirmed to efficiently resist phenols inhibition. Thus, as the inhibition proceeded, metabolism disorder replaced oxidative stress as the main cause of nitrification inhibition. The affected metabolic processes include weakened enzyme catalysis, restricted electron transport and lessened energy generation. At 4 h, nitrifying production of sludge amended with 5 mg/L chlorophenols was 89.27 ± 9.51%-98.15 ± 9.60% lower than blank, the inhibition could be attributed to comprehensively affected metabolism. The structural equation modeling indicated that phenols restricted nitrification enzymes and bacterial electron transport efficiency which was critical to nitrification performance. Moreover, the lessened energy generation weakens enzyme activity to further suppress nitrification. These findings enriched our knowledge of nitrifiers' responses to CPs inhibition and provided the basis for addressing nitrification inhibition.


Assuntos
Clorofenóis , Esgotos , Esgotos/química , Reatores Biológicos/microbiologia , Fenóis , Homeostase , Oxirredução , Nitrificação , Nitrogênio
7.
J Environ Sci (China) ; 124: 330-349, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182143

RESUMO

With the continuous development of nanomaterials in recent years, the application of nanocatalysts in catalytic ozone oxidation has attracted more and more researchers' attention due to their excellent catalytic properties. In this review, we systematically summarized the current research status of nanocatalysts mainly involving material categories, mechanisms and catalytic efficiency. Based on summary and analysis, we found most of the reported nanocatalysts were in the stage of laboratory research, which was caused by the nanocatalysts defects such as easy aggregation, difficult separation, and easy leakage. These defects might result in severe resource waste, economic loss and potentially adverse effects imposed on the ecosystem and human health. Aiming at solving these defects, we further analyzed the reasons and the existing reports, and revealed that coupling nano-catalyst and membrane, supported nanocatalysts and magnetic nanocatalysts had promising potential in solving these problems and promoting the actual application of nanocatalysts in wastewater treatment. Furthermore, the advantages, shortages and our perspectives of these methods are summarized and discussed.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Catálise , Ecossistema , Humanos , Águas Residuárias , Poluentes Químicos da Água/análise , Purificação da Água/métodos
8.
Anal Chem ; 94(2): 732-739, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34932901

RESUMO

The establishment of rapid targeted identification and analysis of antibiotic resistance genes (ARGs) is very important. In this study, an electrochemical sensor, which can detect ARGs was obtained by modifying the sulfhydryl single-stranded DNA probe onto the thin-film gold electrode through self-assembly. The sensor can perform a hybridization reaction with a target sequence to obtain an electrochemical impedance spectroscopy signal. The results showed that when the concentration of the probe used to modify thin-film gold electrodes during preparation was 1 µM, the hybridization time was 1 h, and the hybridization temperature was 35 °C, the self-assembled sensor showed good detection performance for the ARGs encoding ß-lactam hydrolase. The measurement ARG concentration linear range is 6.3-900.0 ng/mL, and the R2 is 0.9992. The sensor shows good specific recognition ability for single-base, double-base, and three-base mismatch DNA. In addition, after 30 days of storage at 4 °C, the accurate identification and analysis of ARGs can still be maintained.


Assuntos
Técnicas Biossensoriais , Antibacterianos/farmacologia , Técnicas Biossensoriais/métodos , Resistência Microbiana a Medicamentos/genética , Técnicas Eletroquímicas , Eletrodos , Ouro/química , Hibridização de Ácido Nucleico , Água
9.
J Environ Manage ; 323: 116302, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150350

RESUMO

It was an important discovery in wastewater treatment that the microorganisms in the traditional activated sludge can form aerobic granular sludge (AGS) by self-aggregation under appropriate water quality and operation conditions. With a typical three-dimensional spherical structure, AGS has high sludge-water separation efficiency, great treatment capacity, and strong tolerance to toxic and harmful substances, so it has been considered to be one of the most promising wastewater treatment technologies. This paper comprehensively reviewed AGS from multiple perspectives over the past two decades, including the culture conditions, granulation mechanisms, metabolic and structural stability, storage, and its diverse applications. Some important issues, such as the reproducibility of culture conditions and the structural and functional stability during application and storage, were also summarized, and the research prospects were put forward. The aggregation behavior of microorganisms in AGS was explained from the perspectives of physiology and ecology of complex populations. The storage of AGS is considered to have large commercial potential value with the increase of large-scale applications. The purpose of this paper is to provide a reference for the systematic and in-depth study on the sludge aerobic granulation process.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Reprodutibilidade dos Testes , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
10.
J Environ Manage ; 317: 115196, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35653841

RESUMO

Nutritional conditions of activated sludge had a significant influence on nitrification inhibition response. This study comprehensively investigated the inhibition of 3,5-dichlorophenol (3,5-DCP) on nitrification of activated sludge with different C/N ratios and carbon source types. The corresponding extracellular polymeric substances (EPS), microbial communities and functional genes were analysed. The results indicated that the addition of carbon source would reduce the nitrification activity and nitrification sensitivity to 3,5-DCP, and the order of the EC50 was sequenced as sodium acetate > methanol > glucose. The response mechanisms of activated sludge under diverse carbon source conditions to 3,5-DCP were summarised as follows. When the 3,5-DCP content was increased from 0.4 mg/L to 0.8 mg/L, the protein content increased from 73.2 ± 2.6 mg/g SS ∼122.4 ± 4 mg/g SS to 92.2 ± 11.2 mg/g SS ∼130.8 ± 9.6 mg/g SS in the tightly bound EPS (TB-EPS). The increase of protein content was attributed to cellular self-protection mechanisms. Furthermore, fluorescence characteristic analysis revealed that tyrosine and tryptophan in loosely bound EPS (LB-EPS) might account for higher EC50 in activated sludge fed with methanol and sodium acetate. In addition, the redundancy analyses (RDA) showed activated sludge with organics enriched the resistant species, such as Proteobacteria and Patescibacteria, while activated sludge without organics enriched the sensitive species, such as Ferruginibacter. Finally, the nitrification genes were found to be consistent with nitrification activity. Thus, the findings provide new insights into nitrification inhibition mechanism under different carbon source conditions.


Assuntos
Carbono , Esgotos , Clorofenóis , Metanol , Esgotos/microbiologia , Acetato de Sódio
11.
Water Sci Technol ; 75(5-6): 1431-1439, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28333058

RESUMO

The Fenton process was used to treat petrochemical secondary effluent. The effects of initial pH, H2O2, and FeSO4·7H2O dosages on chemical oxygen demand (COD) removal, the dissolved organic matter (DOM) removal and the transformation and migration of typical organic matters during the treatment process were investigated. The results showed that the optimum conditions were initial pH of 3.0, H2O2 (30%) dosage of 0.4 mL/L, and FeSO4·7H2O dosage of 1.0 g/L. The highest COD removal efficiency of 61.9% could be achieved for this condition when the average influent COD was 78.5 mg/L. Most of the DOM in the petrochemical wastewater could be removed effectively by Fenton through direct oxidation and coagulation. For example, for trans-1,2-dichlorocyclopentane, results showed that 56.3% of it could be removed by Fenton oxidation, while 13.3% of it could be absorbed by the in situ generated Fenton chemical sludge. The Fenton process is simple and it is suitable for the advanced treatment of petrochemical secondary effluent.


Assuntos
Hidrocarbonetos/isolamento & purificação , Peróxido de Hidrogênio/química , Ferro/química , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Análise da Demanda Biológica de Oxigênio , Cromatografia Gasosa-Espectrometria de Massas , Oxirredução , Esgotos/química , Espectrometria de Fluorescência , Águas Residuárias/química
12.
Water Sci Technol ; 73(10): 2324-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27191552

RESUMO

A sequencing batch reactor was used to investigate the effect of carbon sources on the metabolism of activated sludge. Acetate and phenol, with the chemical oxygen demand (COD) of 330-350 mg L(-1), was used as the carbon source in Periods I and II, respectively. Acetate decreased in the initial 120 min with the intracellular storage materials (XSTO), extracellular polymeric substances (EPS), and the soluble microbial products (SMP) accumulating to 131.0 mg L(-1), 347.5 mg L(-1), and 35.5 mg L(-1), respectively. Then, XSTO and EPS decreased to 124.5 mg L(-1) and 340.0 mg L(-1), respectively, in the following 120 min. When acetate was replaced by phenol, it could not be used at the beginning due to its toxicity. The XSTO decreased from 142 mg L(-1) to 54.6 mg L(-1) during the aeration period. The EPS had a significant increase, with the highest value of 618.1 mg L(-1), which then decreased to 245.6 mg L(-1) at 240 min. The phenol was gradually degraded with the acclimation and it can be fully degraded 18 d later. Meanwhile, the usage ratio of the internal carbon source decreased. The effluent SMP in Period II was 1.7 times that in Period I.


Assuntos
Acetatos/metabolismo , Reatores Biológicos , Carbono/metabolismo , Fenol/metabolismo , Esgotos/química , Acetatos/química , Aerobiose , Análise da Demanda Biológica de Oxigênio , Fenol/química , Eliminação de Resíduos Líquidos/métodos
13.
Water Res ; 261: 121990, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38944002

RESUMO

Petrochemical wastewater (PCWW) treatment poses challenges due to its unique and complex dissolved organic matter (DOM) composition, originating from various industrial processes. Despite the addition of advanced treatment units in PCWW treatment plants to meet discharge standards, the mechanisms of molecular-level sights into DOM reactivity of the upgraded full-scale processes including multiple biological treatments and advanced treatment remain unclear. Herein, we employ water quality indexes, spectra, molecular weight (MW) distribution, and Fourier transform ion cyclotron resonance mass spectrometry to systematically characterize DOM in a typical PCWW treatment plant including influent, micro-oxygen hydrolysis acidification (MOHA), anaerobic/oxic (AO), and micro-flocculation sand filtration-catalytic ozonation (MFSF-CO). Influent DOM is dominated by tryptophan-like and soluble microbial products with MW fractions 〈 1 kDa and 〉 100 kDa, and CHO with lignin and aliphatic/protein structures. MOHA effectively degrades macromolecular CHO (10.86 %) and CHON (5.24 %) compounds via deamination and nitrogen reduction, while AO removes CHOS compounds with MW < 10 kDa by desulfurization, revealing distinct DOM conversion mechanisms. MFSF-CO transforms unsaturated components to less aromatic and more saturated DOM through oxygen addition reactions and shows high CHOS and CHONS reactivity via desulfurization and deamination reactions, respectively. Moreover, the correlation among multiple parameters suggests UV254 combined with AImod as a simple monitoring indicator of DOM to access the chemical composition. The study provides molecular-level insights into DOM for the contribution to the improvement and optimization of the upgraded processes in PCWW.

14.
Chemosphere ; 349: 140842, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048834

RESUMO

Green and low carbon is an essential direction for the development of water treatment technology. Ozone catalysts prepared by the mixing method have advantages in terms of energy consumption and CO2 emissions, but are considered to be insufficient in catalytic efficiency and stability. In this paper, an Mn-Cu-Ce/Al2O3 (MCCA) catalyst was prepared by optimizing the preparation conditions of the mixing method and the types and ratios of active components. Taking petrochemical secondary effluent (PCSE) as the treatment object, the performance of the catalyst and the carbon emission in the preparation process were studied; and compared with the impregnation method. Results showed that compared with catalysts loaded with other components, the MCCA had a higher removal efficiency for TOC (43.04%) and COD (53.18%), which was basically equivalent to the impregnation method, and the treated effluent reached the expected concentration. MCCA promoted the decomposition rate of O3 by ten times, and the main active species generated were found to be •OH and 1O. Similar to the catalytic ozonation by the catalyst prepared by the impregnation method, the adsorption sites and surface hydroxyl groups on the MCCA surface play a significant role in the degradation of pollutants. However, the carbon emission in the catalyst preparation process of the mixing method was 418.68 kg/ton, which was only 44% of the impregnation method (949.67 kg/ton). Under the global low-carbon transition, this study shows that the mixing method aligns more with the concept of green, clean, and efficient ozone catalyst preparation.


Assuntos
Ozônio , Poluentes Químicos da Água , Carbono , Alumínio , Ozônio/química , Poluentes Químicos da Água/análise , Óxido de Alumínio/química , Catálise
15.
Sci Total Environ ; 926: 171798, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521252

RESUMO

In this study, a biological treatment process, which used a built-in ozonation bypass to achieve sludge reduction, was built to treat the industrial antifreeze production wastewater (mainly composed of ethylene glycol). The results indicated there is a positive correlation between ozone dosage and sludge reduction. At the laboratory level, the MLSS in the system can be stably controlled at around 3400 mg MLSS L-1 under the dosage of 0.18 g O3 g-1 MLSS. Ozonation can increase the compactness of sludge flocs (fractal dimension increased from 1.89 to 1.92). Ozone destroys microbial cell membranes and alters the structure of sludge flocs through direct oxidation through electrophilic reactions. It leads to the release of intracellular polysaccharides, proteins, and other biological macromolecules in microorganisms, thereby promoting the implicit growth of microbial populations. Some bacteria such as g_Pseudomonas, g_Gemmobacter, etc. have strong ethylene glycol degradation ability and tolerance to ozonation. The removal of ethylene glycol includes the glyoxylate cycle, glycine serine carbon cycle, and the glutamate-cysteine ligase pathway of assimilation. Gene KatG and gpx may be key factors in improving microbial tolerance to ozonation. The comprehensive evaluation from the perspectives of cost and carbon emission shows that choosing ozone cracking-implicit growth in wastewater treatment systems has significant cost advantages and application value.


Assuntos
Ozônio , Purificação da Água , Águas Residuárias , Esgotos/microbiologia , Ozônio/química , Etilenoglicóis , Eliminação de Resíduos Líquidos/métodos
16.
Sci Total Environ ; 867: 161164, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632901

RESUMO

Aerobic granular sludge (AGS) is a layered microbial aggregate formed by the ordered self-assembly of different microbial populations. In this study, the outer layer (OL), middle layer (ML), and the inner layer (IL) of matured AGS were obtained by circular cutting. The adhesion of microorganisms in IL was significantly higher than that in OL and ML during the famine period, while the adhesion of microorganisms in ML and OL was significantly higher than that in IL during the feast period, confirming that the formation of AGS started in the famine period, and the feast period promoted the increase of particle size. Microorganisms in the three-layer structure were highly diverse and rich in genes for cytochrome c oxidase synthesis with oxygen as the electron acceptor. G_Pseudoxanthomonas was the dominant bacterium in OL. Its spatial distribution increased gradually from the inside to the outside. G_Rhodanobacter was the dominant bacterium in IL. Its spatial distribution gradually decreased from the inside to the outside. The microorganisms in IL contained abundant pili genes. During the self-assembly process of particle formation, G_ Rhodanobaker adhered stronger than G_ Pseudoxanthomonas. The interface between aerobic and anoxic was about 0.6 mm away from the granule surface. Combined with the electron mediator properties of the extracellular polymeric substance (EPS) in granules, it was speculated that the degradation of organic substrates located in the anoxic layer relied on EPS as a mediator for long-range electron transfer, and finally transferred electrons to O2. This study provides a new viewpoint on the formation mechanism of AGS from the perspective of the ordered self-assembly of microorganisms, offering a theoretical basis for the optimal selection of culture conditions and the application of AGS technology.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Esgotos/microbiologia , Aerobiose , Reatores Biológicos/microbiologia , Bactérias/genética , Bactérias/metabolismo , Genótipo , Fenótipo , Eliminação de Resíduos Líquidos
17.
Environ Sci Pollut Res Int ; 30(3): 7904-7913, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36048394

RESUMO

Antibiotic-resistant bacteria/resistance genes (ARB/ARGs) have been paid much attention due to the environmental risks they might bring. They were demonstrated to be widespread in surface water and wastewater. Determining the concentrations of ARGs is the first step to evaluate the degree of pollution. In this study, electrochemical detection technology was studied due to its advantages of low cost, fast response, and satisfactory selectivity. Additionally, the electrochemical sensor technology was used to determine the concentration of a ubiquitous ARG (ampicillin gene blaTEM) in the water environment. A kind of electrochemical sensor was prepared on a glassy carbon electrode (GCE). The results of X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) curves indicated that the single-stranded DNA (ssDNA) probe can be successfully immobilized on the surface of the GCE. In addition, the performance of hybridization between the ssDNA probe and the target DNA at diverse temperatures was compared, of which 35 °C was the optimum. Moreover, the change of charge transfer resistance (ΔRct) for the GCE sensor hybridizing with complementary DNA was much higher than that of DNA with the mismatched base, which indicated that the electrochemical sensor prepared in this study was specific. The sensitivity of the sensor was also proved by the strong correlation between the concentrations of ARGs and ΔRct (with the correlation coefficient (R2) of 0.9905). All in all, this study is meaningful for the comprehend on the detection of ARGs through the electrochemical method.


Assuntos
Antibacterianos , Carbono , Carbono/química , Antibacterianos/farmacologia , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , DNA/química , Eletrodos , Técnicas Eletroquímicas/métodos , Água
18.
J Hazard Mater ; 451: 131199, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933504

RESUMO

Microplastics (MPs) are ubiquitous in the environment and have been verified to be harmful to organisms. The petrochemical industry is a possible contributor, for it is the primary plastic producer but is not focused on. In this background, MPs in the influent, effluent, activated sludge, and expatriate sludge of a typical petrochemical wastewater treatment plant (PWWTP) were identified by the laser infrared imaging spectrometer (LDIR). It revealed that the abundances of MPs in the influent and effluent were as high as 10310 and 1280 items/L with a removal efficiency of 87.6%. The removed MPs accumulated in the sludge, and the MP abundances in activated and expatriate sludge reached 4328 and 10767 items/g, respectively. It is estimated that 1440,000 billion MPs might be released into the environment by the petrochemical industry in 2021 globally. For the specific PWWTP, 25 types of MPs were identified, among which Polypropylene (PP), Polyethylene (PE), and Silicone resin were dominant. All of the detected MPs were smaller than 350 µm, and those smaller than 100 µm prevailed. As for the shape, the fragment was dominant. The study confirmed the critical status of the petrochemical industry in releasing MPs for the first time.

19.
Environ Sci Ecotechnol ; 15: 100244, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36820151

RESUMO

Catalytic ozonation is widely employed in advanced wastewater treatment owing to its high mineralization of refractory organics. The key to high mineralization is the compatibility between catalyst formulation and wastewater quality. Machine learning can greatly improve experimental efficiency, while fluorescence data can provide additional wastewater quality information on the composition and concentration of organics, which is conducive to optimizing catalyst formulation. In this study, machine learning combined with fluorescence spectroscopy was applied to develop ozonation catalysts (Mn/γ-Al2O3 catalyst was used as an example). Based on the data collected from 52 different catalysts, a machine-learning model was established to predict catalyst performance. The correlation coefficient between the experimental and model-predicted values was 0.9659, demonstrating the robustness and good generalization ability of the model. The range of the catalyst formulations was preliminarily screened by fluorescence spectroscopy. When the wastewater was dominated by tryptophan-like and soluble microbial products, the impregnation concentration and time of Mn(NO3)2 were less than 0.3 mol L-1 and 10 h, respectively. Furthermore, the optimized Mn/γ-Al2O3 formulation obtained by the model was impregnation with 0.155 mol L-1 Mn(NO3)2 solution for 8.5 h and calcination at 600 °C for 3.5 h. The model-predicted and experimental values for total organic carbon removal were 54.48% and 53.96%, respectively. Finally, the improved catalytic performance was attributed to the synergistic effect of oxidation (•OH and 1O2) and the Mn/γ-Al2O3 catalyst. This study provides a rapid approach to catalyst design based on the characteristics of wastewater quality using machine learning combined with fluorescence spectroscopy.

20.
Sci Total Environ ; 896: 165274, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37406692

RESUMO

Microplastic (MP) is a type of emerging contaminant that is verified to be threatening to some organisms. Controlling MP emission from the source is preferred for its refractory characteristic. The petrochemical industry is a possible contributor, responsible for the most plastic production, and wastewater is the most possible sink of MP. This study applied the Agilent 8700 Laser infrared imaging spectrometer (LDIR) to detect MPs in one typical petrochemical wastewater treatment plant (PWWTP). It was determined that the abundances of MPs in the influent and effluent of the target PWWTP were as high as 7706 and 608 particles/L. The primary treatment removed most MPs (87.5 %) with a final removal efficiency of 92.1 %. 23 types of MPs were identified, and Polyethylene (PE), Polypropylene (PP), Silicone resin prevailed in the effluent. All the MPs were smaller than 483.9 µm. All in all, this study preliminarily unveiled the ignorable status of the petrochemical industry in releasing MPs into the water environment for the first time.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa