RESUMO
Local adaptation is critical in speciation and evolution, yet comprehensive studies on proximate and ultimate causes of local adaptation are generally scarce. Here, we integrated field ecological experiments, genome sequencing, and genetic verification to demonstrate both driving forces and molecular mechanisms governing local adaptation of body coloration in a lizard from the Qinghai-Tibet Plateau. We found dark lizards from the cold meadow population had lower spectrum reflectance but higher melanin contents than light counterparts from the warm dune population. Additionally, the colorations of both dark and light lizards facilitated the camouflage and thermoregulation in their respective microhabitat simultaneously. More importantly, by genome resequencing analysis, we detected a novel mutation in Tyrp1 that underpinned this color adaptation. The allele frequencies at the site of SNP 459# in the gene of Tyrp1 are 22.22% G/C and 77.78% C/C in dark lizards and 100% G/G in light lizards. Model-predicted structure and catalytic activity showed that this mutation increased structure flexibility and catalytic activity in enzyme TYRP1, and thereby facilitated the generation of eumelanin in dark lizards. The function of the mutation in Tyrp1 was further verified by more melanin contents and darker coloration detected in the zebrafish injected with the genotype of Tyrp1 from dark lizards. Therefore, our study demonstrates that a novel mutation of a major melanin-generating gene underpins skin color variation co-selected by camouflage and thermoregulation in a lizard. The resulting strong selection may reinforce adaptive genetic divergence and enable the persistence of adjacent populations with distinct body coloration.
Assuntos
Lagartos , Melaninas , Animais , Melaninas/genética , Lagartos/genética , Peixe-Zebra , Regulação da Temperatura Corporal/genética , Pigmentação da Pele/genética , CorRESUMO
Survival of the immobile embryo in response to rising temperature is important to determine a species' vulnerability to climate change. However, the collective effects of 2 key thermal characteristics associated with climate change (i.e., rising average temperature and acute heat events) on embryonic survival remain largely unexplored. We used empirical measurements and niche modeling to investigate how chronic and acute heat stress independently and collectively influence the embryonic survival of lizards across latitudes. We collected and bred lizards from 5 latitudes and incubated their eggs across a range of temperatures to quantify population-specific responses to chronic and acute heat stress. Using an embryonic development model parameterized with measured embryonic heat tolerances, we further identified a collective impact of embryonic chronic and acute heat tolerances on embryonic survival. We also incorporated embryonic chronic and acute heat tolerance in hybrid species distribution models to determine species' range shifts under climate change. Embryos' tolerance of chronic heat (T-chronic) remained consistent across latitudes, whereas their tolerance of acute heat (T-acute) was higher at high latitudes than at low latitudes. Tolerance of acute heat exerted a more pronounced influence than tolerance of chronic heat. In species distribution models, climate change led to the most significant habitat loss for each population and species in its low-latitude distribution. Consequently, habitat for populations across all latitudes will shift toward high latitudes. Our study also highlights the importance of considering embryonic survival under chronic and acute heat stresses to predict species' vulnerability to climate change.
Efectos colectivos del aumento de las temperaturas promedio y los eventos de calor en embriones ovíparos Resumen La supervivencia de los embriones inmóviles en respuesta al incremento de temperatura es importante para determinar la vulnerabilidad de las especies al cambio climático. Sin embargo, los efectos colectivos de dos características térmicas claves asociadas con el cambio climático (i. e., aumento de temperatura promedio y eventos de calor agudo) sobre la supervivencia embrionaria permanecen en gran parte inexplorados. Utilizamos mediciones empíricas y modelos de nicho para investigar cómo el estrés térmico crónico y agudo influye de forma independiente y colectiva en la supervivencia embrionaria de los lagartos en todas las latitudes. Recolectamos y criamos lagartos de cinco latitudes e incubamos sus huevos en un rango de temperaturas para cuantificar las respuestas específicas de la población al estrés por calor crónico y agudo. Posteriormente, mediante un modelo de desarrollo embrionario parametrizado con mediciones de tolerancia embrionaria al calor, identificamos un impacto colectivo de las tolerancias embrionarias al calor agudo y crónico en la supervivencia embrionaria. También incorporamos la tolerancia embrionaria crónica y aguda al calor en modelos de distribución de especies híbridas para determinar los cambios de distribución de las especies bajo el cambio climático. La tolerancia embrionaria al calor crónico (Tcrónico) permaneció constante, mientras que la tolerancia al calor agudo (Tagudo) fue mayor en latitudes altas que en latitudes bajas. La tolerancia al calor agudo ejerció una influencia más pronunciada que la tolerancia al calor crónico. En los modelos de distribución de especies, el cambio climático provocó la pérdida de hábitat más significativa para cada población y especie en su distribución de latitudes bajas. En consecuencia, el hábitat para poblaciones en todas las latitudes se desplazará a latitudes altas. Nuestro estudio también resalta la importancia de considerar la supervivencia embrionaria bajo estrés térmico crónico y agudo para predecir la vulnerabilidad de las especies al cambio climático.
Assuntos
Mudança Climática , Embrião não Mamífero , Temperatura Alta , Lagartos , Animais , Lagartos/fisiologia , Lagartos/embriologia , Embrião não Mamífero/fisiologia , Oviparidade , Feminino , Modelos Biológicos , Desenvolvimento Embrionário , TermotolerânciaRESUMO
While the effects of incubation environment on embryonic development and offspring traits have been extensively studied in oviparous vertebrates, studies into how genetic inheritance (population origin), maternal effects, and incubation environment interact to produce varying phenotypes, are rare. To elucidate the interactive role of those three factors during incubation in shaping offspring phenotypes through hydric conditions, we conducted a fully factorial experiment [arid and semiarid populations × maternal dry and wet treatments (MDT and MWT) × embryonic dry and wet treatments (EDT and EWT)] with a desert-dwelling lacertid lizard (Eremias argus). Female lizards in dry conditions produced larger clutch sizes but smaller eggs. The incubation period and hatching success were significantly affected by embryonic but not by maternal moisture treatments. Eggs in the EDT hatched later than those in the EWT in both arid and semiarid populations. Hatching success was lower in EDT than in EWT in the semiarid population, but not in the arid population. Hatchlings from the EDT had a slower post-hatch increase in body mass than those from the EWT. EDT would decrease the survival rates of hatchlings in the semiarid population only. In addition, structural equation models revealed that population had a stronger effect on embryonic and offspring survival than maternal and embryonic moisture. Our study demonstrates locally adaptive strategies of drought resistance at multiple life-history stages in lizard populations from diverse hydric habitats and highlights the importance of genetic factors in determining embryonic drought resistance in oviparous lizards.
Assuntos
Lagartos , Animais , Tamanho da Ninhada , Desenvolvimento Embrionário , Feminino , Herança Materna , FenótipoRESUMO
Evaluating the effects of temperature variations on animals plays an important role in understanding the threat of climate warming. The effects of developmental temperature on offspring performance are critical in evaluating the effects of warming temperatures on the fitness of oviparous species, but the physiological and biochemical basis of this developmental plasticity is largely unknown. In this study, we incubated eggs of the turtle Pelodiscus sinensis at low (24 °C), medium (28 °C), and high (32 °C) temperatures, and evaluated the effects of developmental temperature on offspring fitness, and metabolic enzymes in the neck and limb muscles of hatchlings. The hatchlings from eggs incubated at the medium temperature showed better fitness-related performance (righting response and swimming capacity) and higher activities of metabolic enzymes (hexokinase, HK; lactate dehydrogenase, LDH) than hatchlings from the eggs incubated at high or low temperatures. In addition, the swimming speed and righting response were significantly correlated with the HK activities in limb (swimming speed) and neck (righting response) muscles, suggesting that the developmental plasticity of energy metabolic pathway might play a role in determining the way incubation temperature affects offspring phenotypes. Integrating the fitness-related performance and the activities of metabolic enzymes, we predict that the P. sinensis from high latitude would not face the detrimental effects of climate warming until the average nest temperatures reach 32 °C.
RESUMO
Animals spend a considerable proportion of their life span at rest. However, resting status has often been overlooked when investigating how species respond to environmental conditions. This may induce a large bias in understanding the local adaptation of species across environmental gradients and their vulnerability to potential environmental change. Here, we conducted an empirical study on montane agamid lizards, combined with mechanistic modeling, to compare elevational variations in body temperature and metabolisms (cumulative digestion and maintenance cost) between resting and active status. Our study on three populations of an agamid lizard along an elevational gradient revealed a trend of decreasing body temperature toward higher elevations, the main contributor of which was resting status of the lizards. Using population-specific reaction norms, we predicted greater elevational variation in hourly and cumulative digestion for resting lizards than for active lizards. Climate-change impacts, estimated as the change in cumulative digestion, also show greater elevational variation when resting status is factored into the analysis. Further, our global analysis of 98 agamid species revealed that in about half of their combined distributional range, the contribution of resting status in determining the elevational variation in cumulative digestion and maintenance cost of lizards was greater than the contribution made by a lizard's active status. Our study highlights the importance of considering resting status when investigating how species respond to environmental conditions, especially for those distributed over tropical and subtropical mountain areas.
Assuntos
Altitude , Lagartos , Animais , Lagartos/fisiologia , Modelos Biológicos , Metabolismo Energético/fisiologia , Mudança Climática , Temperatura CorporalRESUMO
Paraneoplastic autoimmune and inflammatory disorders are often associated with myelodysplastic syndromes (MDS). The etiopathogenesis of MDS-associated autoimmune and inflammatory disorders is still unclear and treatment options are limited. Patients with MDS are at high risk of infections, which can be increased by the use of steroids. In the present study, we report on two patients with MDS-related autoimmune and inflammatory disorders who were in remission and reduced the steroid dose with 5-azacytidine treatment. The first case was a 67-year-old patient diagnosed with MDS and the whole-body erythroderma was the chief complaint. When the patient was treated with decitabine, steroid treatment was needed to control the erythroderma. When we changed decitabine to 5-azacytidine, both his erythroderma and his dependency on the steroid treatment were resolved. The second patient was a 68-year-old man with MDS who presented with Sweet's syndrome. Sweet's syndrome was completely treated after the first cycle of 5-azacytidine. In addition, Sweet's syndrome can occur as an adverse reaction of 5-azacitidine, so we illustrate that it is important to distinguish whether Sweet's syndrome is MDS-related skin disorders or 5-azacitidine-related skin side-effects.