Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 382(2271): 20230094, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38522461

RESUMO

At the Royal Society meeting in 2023, we have mainly presented our lunar orbit array concept called DSL, and also briefly introduced a concept of a lunar surface array, LARAF. As the DSL concept had been presented before, in this article, we introduce the LARAF. We propose to build an array in the far side of the Moon, with a master station which handles the data collection and processing, and 20 stations with maximum baseline of 10 km. Each station consists of 12 membrane antenna units, and the stations are connected to the master station by power line and optical fibre. The array will make interferometric observation in the 0.1-50 MHz band during the lunar night, powered by regenerated fuel cells. The whole array can be carried to the lunar surface with a heavy rocket mission, and deployed with a rover in eight months. Such an array would be an important step in the long-term development of lunar-based ultralong wavelength radio astronomy. It has a sufficiently high sensitivity to observe many radio sources in the sky, though still short of the dark age fluctuations. We discuss the possible options in the power supply, data communication, deployment etc. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades (part 2)'.

2.
Philos Trans A Math Phys Eng Sci ; 379(2188): 20190566, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33222649

RESUMO

Due to ionosphere absorption and the interference of natural and artificial radio emissions, astronomical observation from the ground becomes very difficult at the wavelengths of decametre or longer, which we shall refer to as the ultralong wavelengths. This unexplored part of the electromagnetic spectrum has the potential for great discoveries, notably in the study of cosmic dark ages and dawn, but also in heliophysics and space weather, planets and exoplanets, cosmic ray and neutrinos, pulsar and interstellar medium (ISM), extragalactic radio sources, and so on. The difficulty of the ionosphere can be overcome by space observation, and the Moon can shield the radio frequency interferences (RFIs) from the Earth. A lunar orbit array can be a practical first step to opening up the ultralong wave band. Compared with a lunar surface observatory on the far side, the lunar orbit array is simpler and more economical, as it does not need to make the risky and expensive landing, can be easily powered with solar energy, and the data can be transmitted back to the Earth when it is on the near-side part of the orbit. Here, I describe the discovering sky at the longest wavelength (DSL) project, which will consist of a mother satellite and 6-9 daughter satellites, flying on the same circular orbit around the Moon, and forming a linear interferometer array. The data are collected by the mother satellite which computes the interferometric cross-correlations (visibilities) and transmits the data back to the Earth. The whole array can be deployed on the lunar orbit with a single rocket launch. The project is under intensive study in China. This article is part of a discussion meeting issue 'Astronomy from the Moon: the next decades'.

3.
AMB Express ; 12(1): 33, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275297

RESUMO

Different types of mulching film could variously influence soil properties and plant growth. Yet, surprisingly few studies have investigated the effects of mulching film upon soil microbial diversity and community structure. In this research, two kinds of mulching film, a traditional PE (polyethylene) mulching film and a degradable PBAT ((Poly [butyleneadipate-co-terephthalate])) mulching film, were applied to cotton (Gossypium spp.) plants grown in Xinjiang Province, China. The respective influence of the two mulching films on the cotton's soil microbial (bacteria and fungi) diversity and community were investigated. The results showed that applying the PBAT mulching film could significantly alter the diversity of non-rhizosphere soil fungi when compared to using the PE mulching film. However, neither the PE nor PBAT mulching film had any significant influence on the diversity of soil bacteria and rhizosphere soil fungi. Nevertheless, soil microbial community composition differed under the PBAT mulching film treatment vis-à-vis the PE mulching film treatment. The abundance of Gibellulopsis was higher under the PBAT than PE mulching film treatment. Our study's findings provided an empirical basis for the further application of degradable PBAT mulching film for the sustainable development of cotton crops.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa