Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D1121-D1130, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37843156

RESUMO

Biomarkers play an important role in various area such as personalized medicine, drug development, clinical care, and molecule breeding. However, existing animals' biomarker resources predominantly focus on human diseases, leaving a significant gap in non-human animal disease understanding and breeding research. To address this limitation, we present BioKA (Biomarker Knowledgebase for Animals, https://ngdc.cncb.ac.cn/bioka), a curated and integrated knowledgebase encompassing multiple animal species, diseases/traits, and annotated resources. Currently, BioKA houses 16 296 biomarkers associated with 951 mapped diseases/traits across 31 species from 4747 references, including 11 925 gene/protein biomarkers, 1784 miRNA biomarkers, 1043 mutation biomarkers, 773 metabolic biomarkers, 357 circRNA biomarkers and 127 lncRNA biomarkers. Furthermore, BioKA integrates various annotations such as GOs, protein structures, protein-protein interaction networks, miRNA targets and so on, and constructs an interactive knowledge network of biomarkers including circRNA-miRNA-mRNA associations, lncRNA-miRNA associations and protein-protein associations, which is convenient for efficient data exploration. Moreover, BioKA provides detailed information on 308 breeds/strains of 13 species, and homologous annotations for 8784 biomarkers across 16 species, and offers three online application tools. The comprehensive knowledge provided by BioKA not only advances human disease research but also contributes to a deeper understanding of animal diseases and supports livestock breeding.


Assuntos
Biomarcadores , Bases de Conhecimento , Animais , MicroRNAs/genética , Proteínas , RNA Circular , RNA Longo não Codificante
2.
Nucleic Acids Res ; 51(D1): D994-D1002, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36318261

RESUMO

Homology is fundamental to infer genes' evolutionary processes and relationships with shared ancestry. Existing homolog gene resources vary in terms of inferring methods, homologous relationship and identifiers, posing inevitable difficulties for choosing and mapping homology results from one to another. Here, we present HGD (Homologous Gene Database, https://ngdc.cncb.ac.cn/hgd), a comprehensive homologs resource integrating multi-species, multi-resources and multi-omics, as a complement to existing resources providing public and one-stop data service. Currently, HGD houses a total of 112 383 644 homologous pairs for 37 species, including 19 animals, 16 plants and 2 microorganisms. Meanwhile, HGD integrates various annotations from public resources, including 16 909 homologs with traits, 276 670 homologs with variants, 398 573 homologs with expression and 536 852 homologs with gene ontology (GO) annotations. HGD provides a wide range of omics gene function annotations to help users gain a deeper understanding of gene function.


Assuntos
Bases de Dados Genéticas , Animais , Anotação de Sequência Molecular
3.
BMC Pulm Med ; 20(1): 323, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308175

RESUMO

BACKGROUND: Interstitial lung diseases (ILDs), a diverse group of diffuse lung diseases, mainly affect the lung parenchyma. The low-throughput 'omics' technologies (genomics, transcriptomics, proteomics) and relative drug information have begun to reshaped our understanding of ILDs, whereas, these data are scattered among massive references and are difficult to be fully exploited. Therefore, we manually mined and summarized these data at a database (ILDGDB, http://ildgdb.org/ ) and will continue to update it in the future. MAIN BODY: The current version of ILDGDB incorporates 2018 entries representing 20 ILDs and over 600 genes obtained from over 3000 articles in four species. Each entry contains detailed information, including species, disease type, detailed description of gene (e.g. official symbol of gene), and the original reference etc. ILDGDB is free, and provides a user-friendly web page. Users can easily search for genes of interest, view their expression pattern and detailed information, manage genes sets and submit novel ILDs-gene association. CONCLUSION: The main principle behind ILDGDB's design is to provide an exploratory platform, with minimum filtering and interpretation, while making the presentation of the data very accessible, which will provide great help for researchers to decipher gene mechanisms and improve the prevention, diagnosis and therapy of ILDs.


Assuntos
Bases de Dados Genéticas , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/metabolismo , Animais , Genômica , Humanos , Internet , Proteômica , Transcriptoma
4.
Bioengineering (Basel) ; 11(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39061755

RESUMO

In medical image retrieval, accurately retrieving relevant images significantly impacts clinical decision making and diagnostics. Traditional image-retrieval systems primarily rely on single-dimensional image data, while current deep-hashing methods are capable of learning complex feature representations. However, retrieval accuracy and efficiency are hindered by diverse modalities and limited sample sizes. OBJECTIVE: To address this, we propose a novel deep learning-based hashing model, the Deep Attention Fusion Hashing (DAFH) model, which integrates advanced attention mechanisms with medical imaging data. METHODS: The DAFH model enhances retrieval performance by integrating multi-modality medical imaging data and employing attention mechanisms to optimize the feature extraction process. Utilizing multimodal medical image data from the Cancer Imaging Archive (TCIA), this study constructed and trained a deep hashing network that achieves high-precision classification of various cancer types. RESULTS: At hash code lengths of 16, 32, and 48 bits, the model respectively attained Mean Average Precision (MAP@10) values of 0.711, 0.754, and 0.762, highlighting the potential and advantage of the DAFH model in medical image retrieval. CONCLUSIONS: The DAFH model demonstrates significant improvements in the efficiency and accuracy of medical image retrieval, proving to be a valuable tool in clinical settings.

5.
Genomics Proteomics Bioinformatics ; 21(5): 1066-1079, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37898309

RESUMO

The Resource for Coronavirus 2019 (RCoV19) is an open-access information resource dedicated to providing valuable data on the genomes, mutations, and variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this updated implementation of RCoV19, we have made significant improvements and advancements over the previous version. Firstly, we have implemented a highly refined genome data curation model. This model now features an automated integration pipeline and optimized curation rules, enabling efficient daily updates of data in RCoV19. Secondly, we have developed a global and regional lineage evolution monitoring platform, alongside an outbreak risk pre-warning system. These additions provide a comprehensive understanding of SARS-CoV-2 evolution and transmission patterns, enabling better preparedness and response strategies. Thirdly, we have developed a powerful interactive mutation spectrum comparison module. This module allows users to compare and analyze mutation patterns, assisting in the detection of potential new lineages. Furthermore, we have incorporated a comprehensive knowledgebase on mutation effects. This knowledgebase serves as a valuable resource for retrieving information on the functional implications of specific mutations. In summary, RCoV19 serves as a vital scientific resource, providing access to valuable data, relevant information, and technical support in the global fight against COVID-19. The complete contents of RCoV19 are available to the public at https://ngdc.cncb.ac.cn/ncov/.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Bases de Conhecimento , Mutação
6.
Genomics Proteomics Bioinformatics ; 21(5): 1059-1065, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37806555

RESUMO

With the development of artificial intelligence (AI) technologies, biomedical imaging data play an important role in scientific research and clinical application, but the available resources are limited. Here we present Open Biomedical Imaging Archive (OBIA), a repository for archiving biomedical imaging and related clinical data. OBIA adopts five data objects (Collection, Individual, Study, Series, and Image) for data organization, and accepts the submission of biomedical images of multiple modalities, organs, and diseases. In order to protect personal privacy, OBIA has formulated a unified de-identification and quality control process. In addition, OBIA provides friendly and intuitive web interfaces for data submission, browsing, and retrieval, as well as image retrieval. As of September 2023, OBIA has housed data for a total of 937 individuals, 4136 studies, 24,701 series, and 1,938,309 images covering 9 modalities and 30 anatomical sites. Collectively, OBIA provides a reliable platform for biomedical imaging data management and offers free open access to all publicly available data to support research activities throughout the world. OBIA can be accessed at https://ngdc.cncb.ac.cn/obia.


Assuntos
Inteligência Artificial , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa