Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Langmuir ; 39(35): 12510-12519, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37667672

RESUMO

As is known, metal-organic frameworks (MOFs) are a versatile class of materials in energy storage applications including supercapacitors. However, the individual kind of metal nodes connected by organic ligands to form a topological structure still limits the potential storage capacity of MOFs. Herein, a bimetal-based Ni-Mn MOF composite is configured with a one-pot hydrothermal method to derive a composite with a synergic effect to maximize the properties. Moreover, reduced graphene oxide (rGO) sheets are added as a conductive network to anchor the MOF-derived composite of Ni-Mn@C/rGO, which is expected to increase the conductivity of the materials system. The resulting composite exhibited a high specific capacitance of 1674 F g-1 at a current density of 0.3 A g-1, suggesting excellent energy storage performance. The composite was then integrated as the cathode in an asymmetrical supercapacitor with a 3D rGO aerogel anode, resulting in energy densities of 24.1 and 17.5 W h kg-1 at power densities of 88.9 and 444.4 W kg-1, respectively. Additionally, the device demonstrated remarkable long-term stability, with 90% capacitance retention after 10 000 charge-discharge cycles at 10 A g-1.

2.
Inhal Toxicol ; 35(5-6): 139-156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36966416

RESUMO

NASA is currently planning return missions to the Moon for further exploration and research. The Moon is covered by a layer of potentially reactive fine dust, which could pose a toxicological risk of exposure to explorers. To assess this risk, we exposed rats to lunar dust (LD) that was collected during the Apollo14 mission. Rats were exposed to respirable sizes of LD at concentrations of 0, 2.1, 6.8, 20.8, or 60.6 mg/m3 for 4 weeks. At thirteen weeks after exposure, we assessed 44,000 gene transcripts and found the expression of 614 genes with known functions were significantly altered in the rats exposed to the 2 higher concentrations of LD, whereas few changes in gene expression were detected in the group exposed to the lowest concentration of LD. Many of the significant changes in gene expression involved genes known to be associated with inflammation or fibrosis. Four genes encoding pro-inflammatory chemokines were analyzed further for all the sampling points at 1 day, and 1, 4, and 13 weeks after the 4-week dust exposure, using real-time polymerase chain reaction. The expression of these genes was altered in a dose- and time-dependent manner and persistently changed in the lungs of the rats exposed to the two higher concentrations of LD. Their expressions are consistent with changes we detected in pulmonary toxicity biomarkers and pathology in these animals during a previous study. Because Apollo-14 LD contains common mineral oxides similar to an Arizona volcanic ash, besides revealing the toxicity of LD, our findings could help elucidate the genomic and molecular mechanisms involved in pulmonary toxicity induced by terrestrial mineral dusts.


Assuntos
Poeira , Pneumopatias , Ratos , Animais , Poeira/análise , Lua , Pulmão/patologia , Pneumopatias/patologia , Inflamação/patologia , Fibrose
3.
Curr Issues Mol Biol ; 44(2): 654-669, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35723331

RESUMO

The effect of confined and isolated experience on astronauts' health is an important factor to consider for future space exploration missions. The more confined and isolated humans are, the more likely they are to develop negative behavioral or cognitive conditions such as a mood decline, sleep disorder, depression, fatigue and/or physiological problems associated with chronic stress. Molecular mediators of chronic stress, such as cytokines, stress hormones or reactive oxygen species (ROS) are known to induce cellular damage including damage to the DNA. In view of the growing evidence of chronic stress-induced DNA damage, we conducted an explorative study and measured DNA strand breaks in 20 healthy adults. The participants were grouped into five teams (missions). Each team was composed of four participants, who spent 45 days in isolation and confinement in NASA's Human Exploration Research Analog (HERA). Endogenous DNA integrity, ex-vivo radiation-induced DNA damage and the rates of DNA repair were assessed every week. Our results show a high inter-individual variability as well as differences between the missions, which cannot be explained by inter-individual variability alone. The ages and sex of the participants did not appear to influence the results.

4.
Int J Mol Sci ; 20(9)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083348

RESUMO

Detrimental health consequences from exposure to space radiation are a major concern for long-duration human exploration missions to the Moon or Mars. Cellular responses to radiation are expected to be heterogeneous for space radiation exposure, where only high-energy protons and other particles traverse a fraction of the cells. Therefore, assessing DNA damage and DNA damage response in individual cells is crucial in understanding the mechanisms by which cells respond to different particle types and energies in space. In this project, we identified a cell-specific signature for radiation response by using single-cell transcriptomics of human lymphocyte subpopulations. We investigated gene expression in individual human T lymphocytes 3 h after ex vivo exposure to 2-Gy gamma rays while using the single-cell sequencing technique (10X Genomics). In the process, RNA was isolated from ~700 irradiated and ~700 non-irradiated control cells, and then sequenced with ~50 k reads/cell. RNA in each of the cells was distinctively barcoded prior to extraction to allow for quantification for individual cells. Principal component and clustering analysis of the unique molecular identifier (UMI) counts classified the cells into three groups or sub-types, which correspond to CD4+, naïve, and CD8+/NK cells. Gene expression changes after radiation exposure were evaluated using negative binomial regression. On average, BBC3, PCNA, and other TP53 related genes that are known to respond to radiation in human T cells showed increased activation. While most of the TP53 responsive genes were upregulated in all groups of cells, the expressions of IRF1, STAT1, and BATF were only upregulated in the CD4+ and naïve groups, but were unchanged in the CD8+/NK group, which suggests that the interferon-gamma pathway does not respond to radiation in CD8+/NK cells. Thus, single-cell RNA sequencing technique was useful for simultaneously identifying the expression of a set of genes in individual cells and T lymphocyte subpopulation after gamma radiation exposure. The degree of dependence of UMI counts between pairs of upregulated genes was also evaluated to construct a similarity matrix for cluster analysis. The cluster analysis identified a group of TP53-responsive genes and a group of genes that are involved in the interferon gamma pathway, which demonstrate the potential of this method for identifying previously unknown groups of genes with similar expression patterns.


Assuntos
Exposição à Radiação , Fator de Transcrição STAT1/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo , Análise por Conglomerados , Raios gama , Humanos , Imunofenotipagem , Reprodutibilidade dos Testes , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Regulação para Cima/genética , Regulação para Cima/efeitos da radiação
5.
Mol Cell Biochem ; 442(1-2): 155-168, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29098506

RESUMO

Energetic protons are the most abundant particle type in space and can pose serious health risks to astronauts during long-duration missions. The health effects of proton exposure are also a concern for cancer patients undergoing radiation treatment with accelerated protons. To investigate the damage induced by energetic protons in vivo to radiosensitive organs, 6-week-old BALB/c male mice were subjected to 250 MeV proton radiation at whole-body doses of 0.1, 1, and 2 Gy. The gastrointestinal (GI) tract of each exposed animal was dissected 4 h post-irradiation, and the isolated small intestinal tissue was analyzed for histopathological and gene expression changes. Histopathologic observation of the tissue using standard hematoxylin and eosin (H&E) staining methods to screen for morphologic changes showed a marked increase in apoptotic lesions for even the lowest dose of 0.1 Gy, similar to X- or γ rays. The percentage of apoptotic cells increased dose-dependently, but the dose response appeared supralinear, indicating hypersensitivity at low doses. A significant decrease in surviving crypts and mucosal surface area, as well as in cell proliferation, was also observed in irradiated mice. Gene expression analysis of 84 genes involved in the apoptotic process showed that most of the genes affected by protons were common between the low (0.1 Gy) and high (1 and 2 Gy) doses. However, the genes that were distinctively responsive to the low or high doses suggest that high doses of protons may cause apoptosis in the small intestine by direct damage to the DNA, whereas low doses of protons may trigger apoptosis through a different stress response mechanism.


Assuntos
Apoptose/efeitos da radiação , Dano ao DNA , Mucosa Intestinal/metabolismo , Prótons/efeitos adversos , Irradiação Corporal Total/efeitos adversos , Animais , Relação Dose-Resposta à Radiação , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Lesões Experimentais por Radiação
6.
Int J Mol Sci ; 19(11)2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30469384

RESUMO

The implementation of rotating-wall vessels (RWVs) for studying the effect of lack of gravity has attracted attention, especially in the fields of stem cells, tissue regeneration, and cancer research. Immune cells incubated in RWVs exhibit several features of immunosuppression including impaired leukocyte proliferation, cytokine responses, and antibody production. Interestingly, stress hormones influence cellular immune pathways affected by microgravity, such as cell proliferation, apoptosis, DNA repair, and T cell activation. These pathways are crucial defense mechanisms that protect the cell from toxins, pathogens, and radiation. Despite the importance of the adrenergic receptor in regulating the immune system, the effect of microgravity on the adrenergic system has been poorly studied. Thus, we elected to investigate the synergistic effects of isoproterenol (a sympathomimetic drug), radiation, and microgravity in nonstimulated immune cells. Peripheral blood mononuclear cells were treated with the sympathomimetic drug isoproterenol, exposed to 0.8 or 2 Gy γ-radiation, and incubated in RWVs. Mixed model regression analyses showed significant synergistic effects on the expression of the ß2-adrenergic receptor gene (ADRB2). Radiation alone increased ADRB2 expression, and cells incubated in microgravity had more DNA strand breaks than cells incubated in normal gravity. We observed radiation-induced cytokine production only in microgravity. Prior treatment with isoproterenol clearly prevents most of the microgravity-mediated effects. RWVs may be a useful tool to provide insight into novel regulatory pathways, providing benefit not only to astronauts but also to patients suffering from immune disorders or undergoing radiotherapy.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Reparo do DNA , Raios gama , Isoproterenol/farmacologia , Leucócitos/imunologia , Ausência de Peso , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/efeitos da radiação , Ativação Linfocitária , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo
7.
Int J Mol Sci ; 19(10)2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30274169

RESUMO

Among the many stressors astronauts are exposed to during spaceflight, cosmic radiation may lead to various serious health effects. Specifically, space radiation may contribute to decreased immunity, which has been documented in astronauts during short- and long-duration missions, as evidenced by several changes in cellular immunity and plasma cytokine levels. Reactivation of latent herpes viruses, either directly from radiation of latently infected cells and/or from perturbation of the immune system, may result in disease in astronauts. Epstein‒Barr virus (EBV) is one of the eight human herpes viruses known to infect more than 90% of human adults and persists for the life of the host without normally causing adverse effects. Reactivation of several latent viruses in astronauts is well documented, although the mechanism of reactivation is not well understood. We studied the effect of four different types of radiation, (1) 137Cs gamma rays, (2) 150-MeV protons, (3) 600 MeV/n carbon ions, and (4) 600 MeV/n iron ions on the activation of lytic gene transcription and of reactivation of EBV in a latently infected cell line (Akata) at doses of 0.1, 0.5, 1.0, and 2.0 Gy. The data showed that for all doses used in this study, lytic gene transcription was induced and median viral loads were significantly higher for all types of radiation than in corresponding control samples, with the increases detected as early as four days post-exposure and generally tapering off at later time points. The viability and size of EBV-infected Akata cells were highly variable and exhibited approximately the same trend in time for all radiation types at 0.1, 0.5, 1.0, and 2.0 Gy. This work shows that reactivation of viruses can occur due to the effect of different types of radiation on latently infected cells in the absence of changes or cytokines produced in the immune system. In general, gamma rays are more effective than protons, carbon ions, and iron ions in inducing latent virus reactivation, though these high-energy particles did induce more sustained and later reactivation of EBV lytic gene transcription. These findings also challenge the common relative biological effectiveness concept that is often used in radiobiology for other end points.


Assuntos
Carbono/química , Raios gama , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 4/efeitos da radiação , Ferro/química , Prótons , Ativação Viral/efeitos da radiação , Latência Viral/efeitos da radiação , Linhagem Celular , Tamanho Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Humanos , Fótons , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Carga Viral/efeitos da radiação
8.
FASEB J ; 30(6): 2211-24, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26917741

RESUMO

Microgravity, or an altered gravity environment different from the 1 g of the Earth, has been shown to influence global gene expression patterns and protein levels in cultured cells. However, most of the reported studies that have been conducted in space or by using simulated microgravity on the ground have focused on the growth or differentiation of these cells. It has not been specifically addressed whether nonproliferating cultured cells will sense the presence of microgravity in space. In an experiment conducted onboard the International Space Station, confluent human fibroblast cells were fixed after being cultured in space for 3 and 14 d, respectively, to investigate changes in gene and microRNA (miRNA) expression profiles in these cells. Results of the experiment showed that on d 3, both the flown and ground cells were still proliferating slowly, as measured by the percentage of Ki-67(+) cells. Gene and miRNA expression data indicated activation of NF-κB and other growth-related pathways that involve hepatocyte growth factor and VEGF as well as the down-regulation of the Let-7 miRNA family. On d 14, when the cells were mostly nonproliferating, the gene and miRNA expression profile of the flight sample was indistinguishable from that of the ground sample. Comparison of gene and miRNA expressions in the d 3 samples, with respect to d 14, revealed that most of the changes observed on d 3 were related to cell growth for both the flown and ground cells. Analysis of cytoskeletal changes via immunohistochemistry staining of the cells with antibodies for α-tubulin and fibronectin showed no difference between the flown and ground samples. Taken together, our study suggests that in true nondividing human fibroblast cells in culture, microgravity experienced in space has little effect on gene and miRNA expression profiles.-Zhang, Y., Lu, T., Wong, M., Wang, X., Stodieck, L., Karouia, F., Story, M., Wu, H. Transient gene and microRNA expression profile changes of confluent human fibroblast cells in spaceflight.


Assuntos
Fibroblastos/metabolismo , MicroRNAs/metabolismo , Voo Espacial , Transcriptoma , Citoesqueleto/fisiologia , Humanos , MicroRNAs/genética , Fatores de Tempo , Ausência de Peso
9.
Int J Mol Sci ; 18(6)2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561779

RESUMO

In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as bone loss and immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. Over the years, a number of studies have been conducted under real or simulated space conditions. RNA and protein levels in cellular and animal models have been targeted in order to identify pathways affected by spaceflight. Of the many pathways responsive to the space environment, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) network appears to commonly be affected across many different cell types under the true or simulated spaceflight conditions. NF-κB is of particular interest, as it is associated with many of the spaceflight-related health consequences. This review intends to summarize the transcriptomics studies that identified NF-κB as a responsive pathway to ground-based simulated microgravity or the true spaceflight condition. These studies were carried out using either human cell or animal models. In addition, the review summarizes the studies that focused specifically on NF-κB pathway in specific cell types or organ tissues as related to the known spaceflight-related health risks including immune dysfunction, bone loss, muscle atrophy, central nerve system (CNS) dysfunction, and risks associated with space radiation. Whether the NF-κB pathway is activated or inhibited in space is dependent on the cell type, but the potential health impact appeared to be always negative. It is argued that more studies on NF-κB should be conducted to fully understand this particular pathway for the benefit of crew health in space.


Assuntos
Nível de Saúde , NF-kappa B/genética , Transdução de Sinais/genética , Voo Espacial/métodos , Transcriptoma , Simulação de Ausência de Peso/métodos , Animais , Redes Reguladoras de Genes , Humanos , NF-kappa B/metabolismo
10.
Int J Mol Sci ; 18(11)2017 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-29156538

RESUMO

The loss of bone mass and alteration in bone physiology during space flight are one of the major health risks for astronauts. Although the lack of weight bearing in microgravity is considered a risk factor for bone loss and possible osteoporosis, organisms living in space are also exposed to cosmic radiation and other environmental stress factors. As such, it is still unclear as to whether and by how much radiation exposure contributes to bone loss during space travel, and whether the effects of microgravity and radiation exposure are additive or synergistic. Bone is continuously renewed through the resorption of old bone by osteoclast cells and the formation of new bone by osteoblast cells. In this study, we investigated the combined effects of microgravity and radiation by evaluating the maturation of a hematopoietic cell line to mature osteoclasts. RAW 264.7 monocyte/macrophage cells were cultured in rotating wall vessels that simulate microgravity on the ground. Cells under static 1g or simulated microgravity were exposed to γ rays of varying doses, and then cultured in receptor activator of nuclear factor-κB ligand (RANKL) for the formation of osteoclast giant multinucleated cells (GMCs) and for gene expression analysis. Results of the study showed that radiation alone at doses as low as 0.1 Gy may stimulate osteoclast cell fusion as assessed by GMCs and the expression of signature genes such as tartrate resistant acid phosphatase (Trap) and dendritic cell-specific transmembrane protein (Dcstamp). However, osteoclast cell fusion decreased for doses greater than 0.5 Gy. In comparison to radiation exposure, simulated microgravity induced higher levels of cell fusion, and the effects of these two environmental factors appeared additive. Interestingly, the microgravity effect on osteoclast stimulatory transmembrane protein (Ocstamp) and Dcstamp expressions was significantly higher than the radiation effect, suggesting that radiation may not increase the synthesis of adhesion molecules as much as microgravity.


Assuntos
Macrófagos/citologia , Proteínas de Membrana/metabolismo , Osteoclastos/citologia , Fosfatase Ácida Resistente a Tartarato/metabolismo , Ausência de Peso/efeitos adversos , Animais , Técnicas de Cultura de Células , Fusão Celular , Proliferação de Células/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Macrófagos/metabolismo , Macrófagos/efeitos da radiação , Camundongos , Osteoclastos/metabolismo , Osteoclastos/efeitos da radiação , Ligante RANK/farmacologia , Células RAW 264.7
11.
FASEB J ; 28(3): 1486-98, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24334706

RESUMO

Astronauts are exposed to increased body iron stores and radiation, both of which can cause oxidative damage leading to negative health effects. The purpose of this study was to investigate combined effects of high dietary iron (650 mg/kg diet) and radiation exposure (0.375 Gy cesium-137 every other day for 16 d) on markers of oxidative stress, immune system function, and colon mucosal environment in male Sprague-Dawley rats (n=8/group). Control rats consumed adequate iron (45 mg/kg diet) and were not irradiated. Combined treatments increased liver glutathione peroxidase, serum catalase, and colon myeloperoxidase while decreasing total fecal short-chain fatty acid concentrations. The high-iron diet alone increased leukocyte count. Radiation decreased the T-cell CD4:CD8 ratio. Plasma iron was negatively correlated with cytokine production in activated monocytes. Genes involved in colon microbial signaling, immune response, and injury repair were altered by radiation. Genes involved with injury repair and pathogen recognition changed with dietary iron. These data demonstrate that dietary iron and radiation, alone and combined, contribute to oxidative stress that is related to immune system alterations in circulation and the colon. The model presented may help us better understand the changes to these systems that have been identified among astronauts.


Assuntos
Colo/fisiologia , Dieta , Sistema Imunitário/fisiologia , Ferro/administração & dosagem , Estresse Oxidativo , Radiação Ionizante , Animais , Mucosa Intestinal/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
12.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559052

RESUMO

In-space manufacturing of nanomaterials is a promising concept while having limited successful examples. DNA-inspired Janus base nanomaterials (JBNs), used for therapeutics delivery and tissue regeneration, are fabricated via a controlled self-assembly process in water at ambient temperature, making them highly suitable for in-space manufacturing. For the first time, we designed and accomplished the production of JBNs on orbit during the Axiom-2 (Ax-2) mission demonstrating great promising and benefits of in-space manufacturing of nanomaterials.

13.
J Biol Chem ; 286(37): 32483-90, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21775437

RESUMO

This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison with static 1 × g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a high aspect ratio vessel (bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNAs was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22, miR-141, miR-618, and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using quantitative RT-PCR. Expression of several transcription factors including EGR2, ETS1, and c-REL was altered in simulated microgravity conditions. Taken together, the results reported here indicate that simulated microgravity alters the expression of miRNAs and genes in TK6 cells. To our knowledge, this study is the first to report the effects of simulated microgravity on the expression of miRNA and related genes.


Assuntos
Regulação da Expressão Gênica , Linfócitos/metabolismo , MicroRNAs/biossíntese , Ausência de Peso , Linhagem Celular , Perfilação da Expressão Gênica , Linfócitos/citologia , Análise de Sequência com Séries de Oligonucleotídeos
14.
Mol Cell Biochem ; 360(1-2): 189-95, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21948272

RESUMO

Although radiation related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton radiation remain poorly understood. We recently reported that the high energy protons induce cell death through activation of apoptotic signaling genes; caspase 3 and 8 (Baluchamy et al. J Biol Chem 285:24769-24774, 2010). In this study, we investigated the effect of different doses of protons in in vivo mouse system, particularly, brain tissues. A significant dose-dependent induction of reactive oxygen species and lipid peroxidation and reduction of antioxidants; glutathione and superoxide dismutase were observed in proton irradiated mouse brain as compared to control brain. Furthermore, histopathology studies on proton irradiated mouse brain showed significant tissue damage as compared to control brain. Together, our in vitro and in vivo results suggest that proton irradiation alters oxidant and antioxidant levels in the cells to cause proton mediated DNA/tissue damage followed by apoptotic cell death.


Assuntos
Encéfalo/efeitos da radiação , Prótons , Lesões por Radiação/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Prótons/efeitos adversos , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
15.
Life (Basel) ; 12(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35207432

RESUMO

One of the major concerns for long-term exploration missions beyond the Earth's magnetosphere is consequences from exposures to solar particle event (SPE) protons and galactic cosmic rays (GCR). For long-term crewed Lunar and Mars explorations, the production of fresh food in space will provide both nutritional supplements and psychological benefits to the astronauts. However, the effects of space radiation on plants and plant propagules have not been sufficiently investigated and characterized. In this study, we evaluated the effect of two different compositions of charged particles-simulated GCR, and simulated SPE protons on dry and hydrated seeds of the model plant Arabidopsis thaliana and the crop plant Mizuna mustard [Brassica rapa var. japonica]. Exposures to charged particles, simulated GCRs (up to 80 cGy) or SPEs (up to 200 cGy), were performed either acutely or at a low dose rate using the NASA Space Radiation Laboratory (NSRL) facility at Brookhaven National Lab (BNL). Control and irradiated seeds were planted in a solid phytogel and grown in a controlled environment. Five to seven days after planting, morphological parameters were measured to evaluate radiation-induced damage in the seedlings. After exposure to single types of charged particles, as well as to simulated GCR, the hydrated Arabidopsis seeds showed dose- and quality-dependent responses, with heavier ions causing more severe defects. Seeds exposed to simulated GCR (dry seeds) and SPE (hydrated seeds) had significant, although much less damage than seeds exposed to heavier and higher linear energy transfer (LET) particles. In general, the extent of damage depends on the seed type.

16.
J Biol Chem ; 285(32): 24769-74, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20538614

RESUMO

Radiation affects several cellular and molecular processes, including double strand breakage and modifications of sugar moieties and bases. In outer space, protons are the primary radiation source that poses a range of potential health risks to astronauts. On the other hand, the use of proton irradiation for tumor radiation therapy is increasing, as it largely spares healthy tissues while killing tumor tissues. Although radiation-related research has been conducted extensively, the molecular toxicology and cellular mechanisms affected by proton irradiation remain poorly understood. Therefore, in this study, we irradiated rat lung epithelial cells with different doses of protons and investigated their effects on cell proliferation and death. Our data show an inhibition of cell proliferation in proton-irradiated cells with a significant dose-dependent activation and repression of reactive oxygen species and antioxidants glutathione and superoxide dismutase, respectively, compared with control cells. In addition, the activities of apoptosis-related genes such as caspase-3 and -8 were induced in a dose-dependent manner with corresponding increased levels of DNA fragmentation in proton-irradiated cells compared with control cells. Together, our results show that proton irradiation alters oxidant and antioxidant levels in cells to activate the apoptotic pathway for cell death.


Assuntos
Antioxidantes/química , Células Epiteliais/citologia , Pulmão/citologia , Oxidantes/química , Animais , Caspase 3/metabolismo , Caspase 8/metabolismo , Morte Celular , Sobrevivência Celular , Fragmentação do DNA , Relação Dose-Resposta a Droga , Glutationa/química , Prótons , Ratos , Espécies Reativas de Oxigênio
17.
Mol Cell Biochem ; 349(1-2): 213-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21080036

RESUMO

The space radiation environment consists of trapped particle radiation, solar particle radiation, and galactic cosmic radiation (GCR), in which protons are the most abundant particle type. During missions to the moon or to Mars, the constant exposure to GCR and occasional exposure to particles emitted from solar particle events (SPE) are major health concerns for astronauts. Therefore, in order to determine health risks during space missions, an understanding of cellular responses to proton exposure is of primary importance. The expression of DNA repair genes in response to ionizing radiation (X-rays and gamma rays) has been studied, but data on DNA repair in response to protons is lacking. Using qPCR analysis, we investigated changes in gene expression induced by positively charged particles (protons) in four categories (0, 0.1, 1.0, and 2.0 Gy) in nine different DNA repair genes isolated from the testes of irradiated mice. DNA repair genes were selected on the basis of their known functions. These genes include ERCC1 (5' incision subunit, DNA strand break repair), ERCC2/NER (opening DNA around the damage, Nucleotide Excision Repair), XRCC1 (5' incision subunit, DNA strand break repair), XRCC3 (DNA break and cross-link repair), XPA (binds damaged DNA in preincision complex), XPC (damage recognition), ATA or ATM (activates checkpoint signaling upon double strand breaks), MLH1 (post-replicative DNA mismatch repair), and PARP1 (base excision repair). Our results demonstrate that ERCC1, PARP1, and XPA genes showed no change at 0.1 Gy radiation, up-regulation at 1.0 Gy radiation (1.09 fold, 7.32 fold, 0.75 fold, respectively), and a remarkable increase in gene expression at 2.0 Gy radiation (4.83 fold, 57.58 fold and 87.58 fold, respectively). Expression of other genes, including ATM and XRCC3, was unchanged at 0.1 and 1.0 Gy radiation but showed up-regulation at 2.0 Gy radiation (2.64 fold and 2.86 fold, respectively). We were unable to detect gene expression for the remaining four genes (XPC, ERCC2, XRCC1, and MLH1) in either the experimental or control animals.


Assuntos
Reparo do DNA/genética , Regulação da Expressão Gênica/efeitos da radiação , Prótons , Lesões Experimentais por Radiação/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Dano ao DNA , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Proteínas Serina-Treonina Quinases/genética , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Regulação para Cima , Proteína de Xeroderma Pigmentoso Grupo A/genética
18.
Mutat Res ; 711(1-2): 187-92, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21232544

RESUMO

During long-term space travel or cancer therapy, humans are exposed to high linear energy transfer (LET) energetic heavy ions. High-LET radiation is much more effective than low-LET radiation in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, and cytogenetic damage can be utilized as a biomarker for radiation insults. Epidemiological data, mainly from survivors of the atomic bomb detonations in Japan, have enabled risk estimation from low-LET radiation exposures. The identification of a cytogenetic signature that distinguishes high- from low-LET exposure remains a long-term goal in radiobiology. Recently developed fluorescence in situ hybridization (FISH)-painting methodologies have revealed unique endpoints related to radiation quality. Heavy-ions induce a high fraction of complex-type exchanges, and possibly unique chromosome rearrangements. This review will concentrate on recent data obtained with multicolor banding in situ hybridization (mBAND) methods in mammalian cells exposed to low- and high-LET radiations. Chromosome analysis with mBAND technique allows detection of both inter- and intrachromosomal exchanges, and also distribution of the breakpoints of aberrations.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Hibridização in Situ Fluorescente/métodos , Transferência Linear de Energia , Quebras de DNA , Íons Pesados , Humanos , Neoplasias/genética
19.
Life Sci Space Res (Amst) ; 28: 22-25, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33612176

RESUMO

Foods packaged for future deep-space exploration missions may be prepositioned ahead of astronaut arrival and will be exposed to galactic cosmic rays (GCRs) and solar radiation in deep space at higher levels and different spectrums than those found in low-Earth orbit (LEO). In this study, we have evaluated the impact of a GCR simulation (approximately 0.5 and 5 Gy doses) at the NASA Space Radiation Laboratory (NSRL) on two retort thermostabilized food products that are good sources of radiation labile nutrients (thiamin, vitamin E, or unsaturated fats). No trends or nutritional differences were found between the radiation-treated samples and the control immediately after treatment or one-year after treatment. Small changes in a few nutrients were measured following one-year of storage. Further studies may be needed to confirm these results, as the foods in this study were heterogeneous, and this may have masked meaningful changes due to pouch-to-pouch variations.


Assuntos
Radiação Cósmica , Alimentos/efeitos da radiação , Gorduras Insaturadas/efeitos da radiação , Análise de Alimentos , Inocuidade dos Alimentos , Armazenamento de Alimentos , Voo Espacial , Tiamina/efeitos da radiação , Vitamina E/efeitos da radiação
20.
Front Immunol ; 12: 725748, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504500

RESUMO

Long-duration spaceflight is known to cause immune dysregulation in astronauts. Biomarkers of immune system function are needed to determine both the need for and effectiveness of potential immune countermeasures for astronauts. Whereas plasma cytokine concentrations are a well-established biomarker of immune status, salivary cytokine concentrations are emerging as a sensitive indicator of stress and inflammation. For this study, to aid in characterizing immune dysregulation during spaceflight, plasma and saliva cytokines were monitored in astronauts before, during and after long-duration spaceflight onboard the International Space Station. Blood was collected from 13 astronauts at 3 timepoints before, 5 timepoints during and 3 timepoints after spaceflight. Saliva was collected from 6 astronauts at 2 timepoints before spaceflight, 2 timepoints during and 3 timepoints following spaceflight. Samples were analyzed using multiplex array technology. Significant increases in the plasma concentration of IL-3, IL-15, IL-12p40, IFN-α2, and IL-7 were observed during spaceflight compared to before flight baseline. Significant decreases in saliva GM-CSF, IL-12p70, IL-10 and IL-13 were also observed during spaceflight as compared to compared to before flight baseline concentrations. Additionally, plasma TGFß1 and TGFß2 concentrations tended to be consistently higher during spaceflight, although these did not reach statistical significance. Overall, the findings confirm an in-vivo hormonal dysregulation of immunity, appearing pro-inflammatory and Th1 in nature, persists during long-duration orbital spaceflight. These biomarkers may therefore have utility for monitoring the effectiveness of biomedical countermeasures for astronauts, with potential application in terrestrial research and medicine.


Assuntos
Citocinas/análise , Hormônios/imunologia , Saliva/química , Voo Espacial , Estresse Fisiológico/imunologia , Astronautas , Biomarcadores/análise , Feminino , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa