Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 28(21): 32199-32213, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115182

RESUMO

LED-based integrating sphere light sources (LED-ISLSs) in the size of typical microscope slides were developed to calibrate the radiance responsivity of optical imaging microscopes. Each LED-ISLS consists of a miniaturized integrating sphere with a diameter of 4 mm, an LED chip integrated on a printed circuit board, and a thin circular aperture with a diameter of 1 mm as the exit port. The non-uniformity of the radiant exitance of the LED-ISLSs was evaluated to be 0.8%. The normal radiance of the LED-ISLSs in the range of (5∼69) W m-2 sr-1 was measured with a standard uncertainty of 1.3% using two precision apertures and a standard silicon photodetector whose spectral responsivity is traceable to an absolute cryogenic radiometer. The LED-ISLSs were applied to calibrate the radiance responsivity of a home-built optical imaging microscope with a standard uncertainty of 2.6∼2.9%. The LED-ISLSs offer a practical way to calibrate the radiance responsivity of various optical imaging microscopes for results comparison and information exchange.

2.
Soft Robot ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38868951

RESUMO

The somatosensory system is crucial for living beings to survive and thrive in complex environments and to interact with their surroundings. Similarly, rapidly developed soft robots need to be aware of their own posture and detect external stimuli. Bending and force sensing are key for soft machines to achieve embodied intelligence. Here, we present a soft inductive bimodal sensor (SIBS) that uses the strain modulation of magnetic permeability and the eddy-current effect for simultaneous bidirectional bending and force sensing with only two wires. The SIBS is made of a flexible planar coil, a porous ferrite film, and a soft conductive film. By measuring the inductance at two different frequencies, the bending angle and force can be obtained and decoupled. Rigorous experiments revealed that the SIBS can achieve high resolution (0.44° bending and 1.09 mN force), rapid response, excellent repeatability, and high durability. A soft crawling robot embedded with one SIBS can sense its own shape and interact with and respond to external stimuli. Moreover, the SIBS is demonstrated as a wearable human-machine interaction to control a crawling robot via wrist bending and touching. This highlights that the SIBS can be readily implemented in diverse applications for reliable bimodal sensing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa