Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Cell ; 183(1): 258-268.e12, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860739

RESUMO

Plasmodium species, the causative agent of malaria, rely on glucose for energy supply during blood stage. Inhibition of glucose uptake thus represents a potential strategy for the development of antimalarial drugs. Here, we present the crystal structures of PfHT1, the sole hexose transporter in the genome of Plasmodium species, at resolutions of 2.6 Å in complex with D-glucose and 3.7 Å with a moderately selective inhibitor, C3361. Although both structures exhibit occluded conformations, binding of C3361 induces marked rearrangements that result in an additional pocket. This inhibitor-binding-induced pocket presents an opportunity for the rational design of PfHT1-specific inhibitors. Among our designed C3361 derivatives, several exhibited improved inhibition of PfHT1 and cellular potency against P. falciparum, with excellent selectivity to human GLUT1. These findings serve as a proof of concept for the development of the next-generation antimalarial chemotherapeutics by simultaneously targeting the orthosteric and allosteric sites of PfHT1.


Assuntos
Proteínas de Transporte de Monossacarídeos/ultraestrutura , Plasmodium falciparum/metabolismo , Plasmodium falciparum/ultraestrutura , Proteínas de Protozoários/ultraestrutura , Sequência de Aminoácidos , Animais , Antimaláricos , Transporte Biológico , Glucose/metabolismo , Humanos , Malária , Malária Falciparum/parasitologia , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Parasitos , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Açúcares/metabolismo
2.
Mol Cell ; 73(3): 458-473.e7, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30581148

RESUMO

Cholesterol is highly enriched at the plasma membrane (PM), and lipid transfer proteins may deliver cholesterol to the PM in a nonvesicular manner. Here, through a mini-screen, we identified the oxysterol binding protein (OSBP)-related protein 2 (ORP2) as a novel mediator of selective cholesterol delivery to the PM. Interestingly, ORP2-mediated enrichment of PM cholesterol was coupled with the removal of phosphatidylinositol 4, 5-bisphosphate (PI(4,5)P2) from the PM. ORP2 overexpression or deficiency impacted the levels of PM cholesterol and PI(4,5)P2, and ORP2 efficiently transferred both cholesterol and PI(4,5)P2in vitro. We determined the structure of ORP2 in complex with PI(4,5)P2 at 2.7 Å resolution. ORP2 formed a stable tetramer in the presence of PI(4,5)P2, and tetramerization was required for ORP2 to transfer PI(4,5)P2. Our results identify a novel pathway for cholesterol delivery to the PM and establish ORP2 as a key regulator of both cholesterol and PI(4,5)P2 of the PM.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Hepatócitos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Receptores de Esteroides/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Células HEK293 , Humanos , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Receptores de Esteroides/química , Receptores de Esteroides/genética , Relação Estrutura-Atividade
3.
Proc Natl Acad Sci U S A ; 120(6): e2221637120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716376

RESUMO

Lipids establish the specialized thylakoid membrane of chloroplast in eukaryotic photosynthetic organisms, while the molecular basis of lipid transfer from other organelles to chloroplast remains further elucidation. Here we revealed the structural basis of Arabidopsis Sec14 homology proteins AtSFH5 and AtSFH7 in transferring phosphatidic acid (PA) from endoplasmic reticulum (ER) to chloroplast, and whose function in regulating the lipid composition of chloroplast and thylakoid development. AtSFH5 and AtSFH7 localize at both ER and chloroplast, whose deficiency resulted in an abnormal chloroplast structure and a decreased thickness of stacked thylakoid membranes. We demonstrated that AtSFH5, but not yeast and human Sec14 proteins, could specifically recognize and transfer PA in vitro. Crystal structures of the AtSFH5-Sec14 domain in complex with L-α-phosphatidic acid (L-α-PA) and 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) revealed that two PA ligands nestled in the central cavity with different configurations, elucidating the specific binding mode of PA to AtSFH5, different from the reported phosphatidylethanolamine (PE)/phosphatidylcholine (PC)/phosphatidylinositol (PI) binding modes. Quantitative lipidomic analysis of chloroplast lipids showed that PA and monogalactosyldiacylglycerol (MGDG), particularly the C18 fatty acids at sn-2 position in MGDG were significantly decreased, indicating a disrupted ER-to-plastid (chloroplast) lipid transfer, under deficiency of AtSFH5 and AtSFH7. Our studies identified the role and elucidated the structural basis of plant SFH proteins in transferring PA between organelles, and suggested a model for ER-chloroplast interorganelle phospholipid transport from inherent ER to chloroplast derived from endosymbiosis of a cyanobacteriumproviding a mechanism involved in the adaptive evolution of cellular plastids.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Ácidos Fosfatídicos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ácidos Fosfatídicos/metabolismo , Tilacoides/metabolismo
4.
Fish Shellfish Immunol ; 145: 109375, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218424

RESUMO

As a widespread environmental pollutant, microplastics pose a great threat to the tissues and organs of aquatic animals. The carp's muscles are necessary for movement and survival. However, the mechanism of injury of polyethylene microplastics (PE-MPs) to carp muscle remains unclear. Therefore, in this study, PE-MPs with the diameter of 8 µm and the concentration of 1000 ng/L were used to feed carp for 21 days, and polyethylene microplastic treatment groups was established. The results showed that PE-MPs could cause structural abnormalities and disarrangement of muscle fibers, and aggravate oxidative stress in muscles. Exposure to PE-MPs reduced microRNA (miR-21) in muscle tissue, negatively regulated Interleukin-1 Receptor Associated Kinase 4 (IRAK4), activated Nuclear Factor Kappa-B (NF-κB) pathway, induced inflammation, and led to endoplasmic reticulum stress and apoptosis. The present study provides different targets for the prevention of muscle injury induced by polyethylene microplastics.


Assuntos
Carpas , MicroRNAs , Poluentes Químicos da Água , Animais , Polietileno , Microplásticos , Plásticos , Quinases Associadas a Receptores de Interleucina-1 , NF-kappa B , Músculos , Apoptose , Estresse do Retículo Endoplasmático , Inflamação , Estresse Oxidativo
5.
Molecules ; 29(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930897

RESUMO

This study investigated the mechanism by which fucoxanthin acts as a novel ferroptosis inducer to inhibit tongue cancer. The MTT assay was used to detect the inhibitory effects of fucoxanthin on SCC-25 human tongue squamous carcinoma cells. The levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and total iron were measured. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to assess glutathione peroxidase 4 (GPX4), nuclear factor erythroid 2-related factor 2 (Nrf2), Keap1, solute carrier family 7 member 11 (SLC7A11), transferrin receptor protein 1 (TFR1), p53, and heme oxygenase 1 (HO-1) expression. Molecular docking was performed to validate interactions. Compared with the control group, the activity of fucoxanthin-treated SCC-25 cells significantly decreased in a dose- and time-dependent manner. The levels of MMP, GSH, and SOD significantly decreased in fucoxanthin-treated SCC-25 cells; the levels of ROS, MDA, and total iron significantly increased. mRNA and protein expression levels of Keap1, GPX4, Nrf2, and HO-1 in fucoxanthin-treated cells were significantly decreased, whereas levels of TFR1 and p53 were significantly increased, in a concentration-dependent manner. Molecular docking analysis revealed that binding free energies of fucoxanthin with p53, SLC7A11, GPX4, Nrf2, Keap1, HO-1, and TFR1 were below -5 kcal/mol, primarily based on active site hydrogen bonding. Our findings suggest that fucoxanthin can induce ferroptosis in SCC-25 cells, highlighting its potential as a treatment for tongue cancer.


Assuntos
Ferroptose , Heme Oxigenase-1 , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Xantofilas , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Ferroptose/efeitos dos fármacos , Xantofilas/farmacologia , Xantofilas/química , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Linhagem Celular Tumoral , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia , Receptores da Transferrina/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Superóxido Dismutase/metabolismo , Regulação para Baixo/efeitos dos fármacos , Antígenos CD
6.
J Cardiovasc Magn Reson ; 25(1): 41, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37475047

RESUMO

PURPOSE: To investigate the feasibility and clinical utility of a compressed-sensing-accelerated subtractionless whole-body MRA (CS-WBMRA) protocol with only contrast injection for suspected arterial diseases, by comparison to conventional dual-pass subtraction-based whole-body MRA (conventional-WBMRA) and available computed tomography angiography (CTA). MATERIALS AND METHODS: This prospective study assessed 86 patients (mean age, 56 years ± 16.4 [standard deviation]; 25 women) with suspected arterial diseases from May 2021 to December 2022, who underwent CS-WBMRA (n = 48, mean age, 55.9 years ± 16.4 [standard deviation]; 25 women) and conventional-WBMRA (n = 38, mean age, 48 years ± 17.4 [standard deviation]; 20 women) on a 3.0 T MRI after random group assignment based on the chronological order of enrolment. Of all enrolled patients administered the CS-WBMRA protocol, 35% (17/48) underwent CTA as required by clinical demands. Two experienced radiologists independently scored the qualitative image quality and venous enhancement contamination. Quantitative image assessment was carried out by determining and comparing the apparent signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) of four representative arterial segments. The total examination time and contrast-dose were also recorded. The independent samples t-test or the Wilcoxon rank sum test was used for statistical analysis. RESULTS: The overall scores of CS-WBMRA outperformed those of conventional-WMBRA (3.40 ± 0.60 vs 3.22 ± 0.55, P < 0.001). In total, 1776 and 1406 arterial segments in the CS-WBMRA and conventional-WBMRA group were evaluated. Qualitative image scores for 7 (of 15) vessel segments in the CS-WMBRA group had statistically significantly increased values compared to those of the conventional-WBMRA groups (P < 0.05). Scores from the other 8 segments showed similar image quality (P > 0.05) between the two protocols. In the quantitative analysis, overall apparent SNRs were significantly higher in the conventional-WBMRA group than in the CS-WBMRA group (214.98 ± 136.05 vs 164.90 ± 118.05; P < 0.001), while overall apparent CNRs were not significantly different in these two groups (CS vs conventional: 107.13 ± 72.323 vs 161.24 ± 118.64; P > 0.05). In the CS-WBMRA group, 7 of 1776 (0.4%) vessel segments were contaminated severely by venous enhancement, while in the convention-WBMRA group, 317 of 1406 (23%) were rated as severe contamination. In the CS-WBMRA group, total examination and reconstruction times were only 7 min and 10 min, respectively, vs 20 min and < 30 s for the conventional WBMRA group, respectively. The contrast agent dose used in the CS-WBMRA protocol was reduced by half compared to conventional-WBMRA protocol (18.7 ± 3.5 ml vs 37.2 ± 5.4 ml, P = 0.008). CONCLUSION: The CS-WBMRA protocol provides excellent image quality and sufficient diagnostic accuracy for whole-body arterial disease, with relatively faster workflow and half-dose reduction of contrast agent, which has greater potential in clinical practice compared with conventional-WBMRA.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Feminino , Pessoa de Meia-Idade , Estudos de Viabilidade , Estudos Prospectivos , Valor Preditivo dos Testes , Angiografia por Ressonância Magnética/métodos
7.
Proc Natl Acad Sci U S A ; 117(25): 14270-14279, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513699

RESUMO

Directional cell migration involves signaling cascades that stimulate actin assembly at the leading edge, and additional pathways must inhibit actin polymerization at the rear. During neuroblast migration in Caenorhabditis elegans, the transmembrane protein MIG-13/Lrp12 acts through the Arp2/3 nucleation-promoting factors WAVE and WASP to guide the anterior migration. Here we show that a tyrosine kinase, SRC-1, directly phosphorylates MIG-13 and promotes its activity on actin assembly at the leading edge. In GFP knockin animals, SRC-1 and MIG-13 distribute along the entire plasma membrane of migrating cells. We reveal that a receptor-like tyrosine phosphatase, PTP-3, maintains the F-actin polarity during neuroblast migration. Recombinant PTP-3 dephosphorylates SRC-1-dependent MIG-13 phosphorylation in vitro. Importantly, the endogenous PTP-3 accumulates at the rear of the migrating neuroblast, and its extracellular domain is essential for directional cell migration. We provide evidence that the asymmetrically localized tyrosine phosphatase PTP-3 spatially restricts MIG-13/Lrp12 receptor activity in migrating cells.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Movimento Celular/fisiologia , Neurônios/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Polaridade Celular/fisiologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Proteínas de Membrana/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais
8.
Acta Biochim Biophys Sin (Shanghai) ; 54(8): 1159-1170, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35866601

RESUMO

The mitogen-activated protein kinase (MAPK) signaling pathways are highly conserved in eukaryotes, regulating various cellular processes. The MAPK kinases (MKKs) are dual specificity kinases, serving as convergence and divergence points of the tripartite MAPK cascades. Here, we investigate the biochemical characteristics and three-dimensional structure of MKK5 in Arabidopsis (AtMKK5). The recombinant full-length AtMKK5 is phosphorylated and can activate its physiological substrate AtMPK6. There is a conserved kinase interacting motif (KIM) at the N-terminus of AtMKK5, indispensable for specific recognition of AtMPK6. The kinase domain of AtMKK5 adopts active conformation, of which the extended activation segment is stabilized by the phosphorylated Ser221 and Thr215 residues. In line with sequence divergence from other MKKs, the αD and αK helices are missing in AtMKK5, suggesting that the AtMKK5 may adopt distinct modes of upstream kinase/substrate binding. Our data shed lights on the molecular mechanisms of MKK activation and substrate recognition, which may help design specific inhibitors targeting human and plant MKKs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação
9.
Acta Pharmacol Sin ; 42(1): 68-76, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32457417

RESUMO

Programmed cell death (PCD), including apoptosis, apoptotic necrosis, and pyroptosis, is involved in various organ dysfunction syndromes. Recent studies have revealed that a substrate of caspase-3, gasdermin E (GSDME), functions as an effector for pyroptosis; however, few inhibitors have been reported to prevent pyroptosis mediated by GSDME. Here, we developed a class of GSDME-derived inhibitors containing the core structure of DMPD or DMLD. Ac-DMPD-CMK and Ac-DMLD-CMK could directly bind to the catalytic domains of caspase-3 and specifically inhibit caspase-3 activity, exhibiting a lower IC50 than that of Z-DEVD-FMK. Functionally, Ac-DMPD/DMLD-CMK substantially inhibited both GSDME and PARP cleavage by caspase-3, preventing apoptotic and pyroptotic events in hepatocytes and macrophages. Furthermore, in a mouse model of bile duct ligation that mimics intrahepatic cholestasis-related acute hepatic failure, Ac-DMPD/DMLD-CMK significantly alleviated liver injury. Together, this study not only identified two specific inhibitors of caspase-3 for investigating PCD but also, more importantly, shed light on novel lead compounds for treating liver failure and organ dysfunctions caused by PCD.


Assuntos
Clorometilcetonas de Aminoácidos/uso terapêutico , Caspase 3/metabolismo , Inibidores de Caspase/uso terapêutico , Hepatopatias/prevenção & controle , Oligopeptídeos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Clorometilcetonas de Aminoácidos/química , Animais , Apoptose/efeitos dos fármacos , Ductos Biliares/cirurgia , Inibidores de Caspase/química , Linhagem Celular Tumoral , Humanos , Ligadura , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Oligopeptídeos/química , Fragmentos de Peptídeos/química , Substâncias Protetoras/química , Piroptose/efeitos dos fármacos , Receptores de Estrogênio/química
10.
Nucleic Acids Res ; 46(9): 4771-4782, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29490074

RESUMO

Specific manipulation of RNA is necessary for the research in biotechnology and medicine. The RNA-binding domains of Pumilio/fem-3 mRNA binding factors (PUF domains) are programmable RNA binding scaffolds used to engineer artificial proteins that specifically modulate RNAs. However, the native PUF domains generally recognize 8-nt RNAs, limiting their applications. Here, we modify the PUF domain of human Pumilio1 to engineer PUFs that recognize RNA targets of different length. The engineered PUFs bind to their RNA targets specifically and PUFs with more repeats have higher binding affinity than the canonical eight-repeat domains; however, the binding affinity reaches the peak at those with 9 and 10 repeats. Structural analysis on PUF with nine repeats reveals a higher degree of curvature, and the RNA binding unexpectedly and dramatically opens the curved structure. Investigation of the residues positioned in between two RNA bases demonstrates that tyrosine and arginine have favored stacking interactions. Further tests on the availability of the engineered PUFs in vitro and in splicing function assays indicate that our engineered PUFs bind RNA targets with high affinity in a programmable way.


Assuntos
Domínios Proteicos , Engenharia de Proteínas , Proteínas de Ligação a RNA/química , RNA/química , Processamento Alternativo , Arginina/química , Sequência de Bases , Humanos , Modelos Moleculares , Ligação Proteica , RNA/metabolismo , Tirosina/química
11.
Biochem Biophys Res Commun ; 495(1): 1-6, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061304

RESUMO

Sucrose non-fermenting (Snf1)-related kinase (SNRK) is a novel member of the AMP-activated protein kinase (AMPK) family and is involved in many metabolic processes. Here we report the crystal structure of an N-terminal SNRK fragment containing kinase and adjacent ubiquitin-associated (UBA) domains. This structure shows that the UBA domain binds between the N- and C-lobes of the kinase domain. The mode of UBA binding in SNRK largely resembles that in AMPK and brain specific kinase (BRSK), however, unique interactions play vital roles in stabilizing the KD-UBA interface of SNRK. We further propose a potential role of the UBA domain in the regulation of SNRK kinase activity. This study provides new insights into the structural diversities of the AMPK kinase family.


Assuntos
Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Receptor EphA5/química , Receptor EphA5/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Ubiquitina/metabolismo
12.
Nature ; 491(7424): 478-82, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23086143

RESUMO

The single-component type-II NADH dehydrogenases (NDH-2s) serve as alternatives to the multisubunit respiratory complex I (type-I NADH dehydrogenase (NDH-1), also called NADH:ubiquinone oxidoreductase; EC 1.6.5.3) in catalysing electron transfer from NADH to ubiquinone in the mitochondrial respiratory chain. The yeast NDH-2 (Ndi1) oxidizes NADH on the matrix side and reduces ubiquinone to maintain mitochondrial NADH/NAD(+) homeostasis. Ndi1 is a potential therapeutic agent for human diseases caused by complex I defects, particularly Parkinson's disease, because its expression restores the mitochondrial activity in animals with complex I deficiency. NDH-2s in pathogenic microorganisms are viable targets for new antibiotics. Here we solve the crystal structures of Ndi1 in its substrate-free, NADH-, ubiquinone- and NADH-ubiquinone-bound states, to help understand the catalytic mechanism of NDH-2s. We find that Ndi1 homodimerization through its carboxy-terminal domain is critical for its catalytic activity and membrane targeting. The structures reveal two ubiquinone-binding sites (UQ(I) and UQ(II)) in Ndi1. NADH and UQ(I) can bind to Ndi1 simultaneously to form a substrate-protein complex. We propose that UQ(I) interacts with FAD to act as an intermediate for electron transfer, and that NADH transfers electrons through this FAD-UQ(I) complex to UQ(II). Together our data reveal the regulatory and catalytic mechanisms of Ndi1 and may facilitate the development or targeting of NDH-2s for potential therapeutic applications.


Assuntos
Complexo I de Transporte de Elétrons/química , Mitocôndrias/enzimologia , Modelos Moleculares , Proteínas de Saccharomyces cerevisiae/química , Cristalografia por Raios X , Complexo I de Transporte de Elétrons/isolamento & purificação , Complexo I de Transporte de Elétrons/metabolismo , NAD/química , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquinona/química
13.
Biochemistry ; 56(46): 6165-6175, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29077400

RESUMO

The mitogen-activated protein kinases (MAPKs) are key components of cellular signal transduction pathways, which are down-regulated by the MAPK phosphatases (MKPs). Catalytic activity of the MKPs is controlled both by their ability to recognize selective MAPKs and by allosteric activation upon binding to MAPK substrates. Here, we use a combination of experimental and computational techniques to elucidate the molecular mechanism for the ERK2-induced MKP3 activation. Mutational and kinetic study shows that the 334FNFM337 motif in the MKP3 catalytic domain is essential for MKP3-mediated ERK2 inactivation and is responsible for ERK2-mediated MKP3 activation. The long-term molecular dynamics (MD) simulations further reveal a complete dynamic process in which the catalytic domain of MKP3 gradually changes to a conformation that resembles an active MKP catalytic domain over the time scale of the simulation, providing a direct time-dependent observation of allosteric signal transmission in ERK2-induced MKP3 activation.


Assuntos
Fosfatase 6 de Especificidade Dupla/metabolismo , Ativação Enzimática , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Transdução de Sinais , Regulação Alostérica , Animais , Domínio Catalítico , Fosfatase 6 de Especificidade Dupla/química , Humanos , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/química , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Ratos
14.
Nucleic Acids Res ; 43(18): 9051-64, 2015 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-26304548

RESUMO

Smad proteins are important intracellular mediators of TGF-ß signalling, which transmit signals directly from cell surface receptors to the nucleus. The MH1 domain of Smad plays a key role in DNA recognition. Two types of DNA sequence were identified as Smad binding motifs: the Smad binding element (SBE) and the GC-rich sequence. Here we report the first crystal structure of the Smad5 MH1 domain in complex with the GC-rich sequence. Compared with the Smad5-MH1/SBE complex structure, the Smad5 MH1 domain contacts the GC-rich site with the same ß-hairpin, but the detailed interaction modes are different. Conserved ß-hairpin residues make base specific contacts with the minimal GC-rich site, 5'-GGC-3'. The assembly of Smad5-MH1 on the GC-rich DNA also results in distinct DNA conformational changes. Moreover, the crystal structure of Smad5-MH1 in complex with a composite DNA sequence demonstrates that the MH1 domain is targeted to each binding site (GC-rich or SBE) with modular binding modes, and the length of the DNA spacer affects the MH1 assembly. In conclusion, our work provides the structural basis for the recognition and binding specificity of the Smad MH1 domain with the DNA targets.


Assuntos
DNA/química , Proteína Smad5/química , Animais , Sequência de Bases , Sítios de Ligação , DNA/metabolismo , Sequência Rica em GC , Sequências Repetidas Invertidas , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Smad3/metabolismo , Proteína Smad5/metabolismo
15.
Biosci Biotechnol Biochem ; 80(10): 1939-46, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27251228

RESUMO

The SAD (synapses of amphids defective) kinases, including SAD-A and SAD-B, play important roles in the regulation of neuronal development, cell cycle, and energy metabolism. Our recent study of mouse SAD-A identified a unique autoinhibitory sequence (AIS), which binds at the junction of the kinase domain (KD) and the ubiquitin-associated (UBA) domain and exerts autoregulation in cooperation with UBA. Here, we report the crystal structure of the mouse SAD-B C-terminal fragment including the AIS and the kinase-associated domain 1 (KA1) at 2.8 Å resolution. The KA1 domain is structurally conserved, while the isolated AIS sequence is highly flexible and solvent-accessible. Our biochemical studies indicated that the SAD-B AIS exerts the same autoinhibitory role as that in SAD-A. We believe that the flexible isolated AIS sequence is readily available for interaction with KD-UBA and thus inhibits SAD-B activity.


Assuntos
Fragmentos de Peptídeos/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Sequência de Aminoácidos , Animais , Sequência Conservada , Camundongos , Modelos Moleculares , Domínios Proteicos , Proteínas Serina-Treonina Quinases/metabolismo
16.
Nature ; 459(7250): 1146-9, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19474788

RESUMO

The AMP-activated protein kinase (AMPK) is characterized by its ability to bind to AMP, which enables it to adjust enzymatic activity by sensing the cellular energy status and maintain the balance between ATP production and consumption in eukaryotic cells. It also has important roles in the regulation of cell growth and proliferation, and in the establishment and maintenance of cell polarity. These important functions have rendered AMPK an important drug target for obesity, type 2 diabetes and cancer treatments. However, the regulatory mechanism of AMPK activity by AMP binding remains unsolved. Here we report the crystal structures of an unphosphorylated fragment of the AMPK alpha-subunit (KD-AID) from Schizosaccharomyces pombe that contains both the catalytic kinase domain and an autoinhibitory domain (AID), and of a phosphorylated kinase domain from Saccharomyces cerevisiae (Snf1-pKD). The AID binds, from the 'backside', to the hinge region of its kinase domain, forming contacts with both amino-terminal and carboxy-terminal lobes. Structural analyses indicate that AID binding might constrain the mobility of helix alphaC, hence resulting in an autoinhibited KD-AID with much lower kinase activity than that of the kinase domain alone. AMP activates AMPK both allosterically and by inhibiting dephosphorylation. Further in vitro kinetic studies demonstrate that disruption of the KD-AID interface reverses the autoinhibition and these AMPK heterotrimeric mutants no longer respond to the change in AMP concentration. The structural and biochemical data have shown the primary mechanism of AMPK autoinhibition and suggest a conformational switch model for AMPK activation by AMP.


Assuntos
Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Modelos Moleculares , Saccharomyces cerevisiae/enzimologia , Schizosaccharomyces/enzimologia , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Mutação , Fosforilação , Estrutura Terciária de Proteína , Ratos , Alinhamento de Sequência
17.
Chin Med Sci J ; 30(2): 65-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26148994

RESUMO

OBJECTIVE: To explore the relationship between ulcerative colitis (UC) and lung injuries by assessing their clinical manifestations and characteristics. METHODS: From July 2009 to April 2012, 91 UC patients presenting to Longhua Hospital who met the established inclusion and exclusion criteria were enrolled in this retrospective study. According to the scores of disease activity index, the patients were divided into the mild, moderate, and severe groups. Meanwhile, the records of pulmonary symptoms, chest X-ray image, and pulmonary function were reviewed. RESULTS: Sixty-eight (74.7%) patients had at least 1 pulmonary symptom, such as cough (38.5%), shortness of breath (27.5%), and expectoration (17.6%). And 77 (84.6%) had at least 1 ventilation abnormality. Vital capacity value was significantly lower in the severe group than that in the mild group (91.82%±10.38% vs. 98.92%±12.12%, P<0.05). CONCLUSIONS: Lung injury is a common extraintestinal complication of UC. According to the theory in Traditional Chinese Medicine that the lung and large intestine are related, both the lungs and large intestine should be treated simultaneously.


Assuntos
Colite Ulcerativa/complicações , Lesão Pulmonar/etiologia , Adulto , Colite Ulcerativa/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Capacidade Vital
20.
Biotechnol Lett ; 36(5): 899-905, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24557068

RESUMO

The HIN domain of myeloid nuclear differentiation antigen (MNDA) was expressed and purified as a monomer using E. coli JM109 as host. The protein interacted with double-stranded DNA at a Kd of 3.15 µM and did not recognize the termini of double-stranded DNA. Isothermal titration calorimetry indicated that the interaction between the protein and double-stranded DNA is mainly mediated by electrostatic attractions and hydrogen bonding. We developed a model to analyze the potential DNA binding site of the MNDA HIN domain. Based on the model, molecular docking and mutation studies suggest that the double-stranded DNA binding site of the protein is different from other HIN-DNA structures. This work facilitates the design of specific drugs against pathogens detected by human MNDA.


Assuntos
Antígenos de Diferenciação Mielomonocítica/isolamento & purificação , Antígenos de Diferenciação Mielomonocítica/metabolismo , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo , Antígenos de Diferenciação Mielomonocítica/química , Antígenos de Diferenciação Mielomonocítica/genética , DNA/química , DNA/metabolismo , Humanos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa