Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
J Immunol ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392378

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection characterized by multiorgan involvement and inflammation. Testing of cellular function ex vivo to understand the aberrant immune response in MIS-C is limited. Despite strong Ab production in MIS-C, SARS-CoV-2 nucleic acid testing can remain positive for 4-6 wk postinfection. Therefore, we hypothesized that dysfunctional cell-mediated Ab responses downstream of Ab production may be responsible for delayed clearance of viral products in MIS-C. In MIS-C, monocytes were hyperfunctional for phagocytosis and cytokine production, whereas NK cells were hypofunctional for both killing and cytokine production. The decreased NK cell cytotoxicity correlated with an NK exhaustion marker signature and systemic IL-6 levels. Potentially providing a therapeutic option, cellular engagers of CD16 and SARS-CoV-2 proteins were found to rescue NK cell function in vitro. Taken together, our results reveal dysregulation in Ab-mediated cellular responses of myeloid and NK cells that likely contribute to the immune pathology of this disease.

2.
J Immunol ; 210(8): 1108-1122, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36881874

RESUMO

CMV infection alters NK cell phenotype and function toward a more memory-like immune state. These cells, termed adaptive NK cells, typically express CD57 and NKG2C but lack expression of the FcRγ-chain (gene: FCER1G, FcRγ), PLZF, and SYK. Functionally, adaptive NK cells display enhanced Ab-dependent cellular cytotoxicity (ADCC) and cytokine production. However, the mechanism behind this enhanced function is unknown. To understand what drives enhanced ADCC and cytokine production in adaptive NK cells, we optimized a CRISPR/Cas9 system to ablate genes from primary human NK cells. We ablated genes that encode molecules in the ADCC pathway, such as FcRγ, CD3ζ, SYK, SHP-1, ZAP70, and the transcription factor PLZF, and tested subsequent ADCC and cytokine production. We found that ablating the FcRγ-chain caused a modest increase in TNF-α production. Ablation of PLZF did not enhance ADCC or cytokine production. Importantly, SYK kinase ablation significantly enhanced cytotoxicity, cytokine production, and target cell conjugation, whereas ZAP70 kinase ablation diminished function. Ablating the phosphatase SHP-1 enhanced cytotoxicity but reduced cytokine production. These results indicate that the enhanced cytotoxicity and cytokine production of CMV-induced adaptive NK cells is more likely due to the loss of SYK than the lack of FcRγ or PLZF. We found the lack of SYK expression could improve target cell conjugation through enhanced CD2 expression or limit SHP-1-mediated inhibition of CD16A signaling, leading to enhanced cytotoxicity and cytokine production.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Quinase Syk/genética , Sistemas CRISPR-Cas , Células Matadoras Naturais , Citocinas , Citotoxicidade Celular Dependente de Anticorpos
3.
Small ; 20(5): e2305091, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37681505

RESUMO

Animals with robust attachment abilities commonly exhibit stable attachment and convenient detachment. However, achieving an efficient attachment-detachment function in bioinspired adhesives is challenging owing to the complexity and delay of actuators. In this study, a class of multilayer adhesives (MAs) comprising backing, middle, and bottom layers is proposed to realize rapid switching by only adjusting the preload. At low preload, the MAs maintain intimate contact with the substrate. By contrast, a sufficiently large preload results in significant deformation of the middle layer, causing underside buckling and reducing adhesion. By optimizing the structural parameters of the MAs, a high switching ratio (up to 136×) can be achieved under different preloads. Furthermore, the design of the MAs incorporates a film-terminated structure, which prevents the embedding of dirt particles, simplifies cleaning, and maintains the separation and uprightness of the microstructures. Consequently, the MAs demonstrate practical potential for simple and efficient transportation applications, as they achieve switchable adhesion through their structure, exhibiting a high switching ratio and fast switching.

4.
Cytotherapy ; 26(3): 252-260, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38127030

RESUMO

BACKGROUND AIMS: Natural killer (NK) cell transfer is a promising cellular immunotherapy for cancer. Previously, we developed a robust method to generate large NK cell numbers from CD34+ hematopoietic stem and progenitor cells (HSPCs), which exhibit strong anti-tumor activity. However, since these cells express low levels of the Fc receptor CD16a in vitro, antibody-dependent cellular cytotoxicity (ADCC) by these cells is limited. To broaden clinical applicability of our HSPC-NK cells toward less NK-sensitive malignancies, we aimed to improve ADCC through CD16a transduction. METHODS: Using wildtype and S197P mutant greater-affinity (both with V158) CD16a retroviral transgenes (i.e., a cleavable and noncleavable CD16a upon stimulation), we generated CD16a HSPC-transduced NK cells, with CD34+ cells isolated from umbilical cord blood (UCB) or peripheral blood after G-CSF stem cell mobilization (MPB). CD16a expressing NK cells were enriched using flow cytometry-based cell sorting. Subsequently, phenotypic analyses and functional assays were performed to investigate natural cytotoxicity and ADCC activity. RESULTS: Mean transduction efficiency was 34% for UCB-derived HSPCs and 20% for MPB-derived HSPCs, which was enriched by flow cytometry-based cell sorting to >90% for both conditions. Expression of the transgene remained stable during the entire NK expansion cell generation process. Proliferation and differentiation of HSPCs were not hampered by the transduction process, resulting in effectively differentiated CD56+ NK cells after 5 weeks. Activation of the HSPC-derived NK cells resulted in significant shedding of wildtype CD16a transcribed from the endogenous gene, but not of the noncleavable mutant CD16a protein expressed from the transduced construct. The mean increase of CD107+IFNγ+ expressing NK cells after inducing ADCC was tenfold in enriched noncleavable CD16a HSPC-NK cells. Killing capacity of CD16a-transduced NK cells was significantly improved after addition of a tumor-targeting antibody in tumor cell lines and primary B-cell leukemia and lymphoma cells compared to unmodified HSPC-NK cells. CONCLUSIONS: Together, these data demonstrate that the applicability of adoptive NK cell immunotherapy may be broadened to less NK-sensitive malignancies by upregulation of CD16a expression in combination with the use of tumor-targeting monoclonal antibodies.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Receptores de IgG , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Células Matadoras Naturais , Receptores Fc/metabolismo , Humanos
5.
Exp Dermatol ; 33(1): e14979, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37975615

RESUMO

Although a large number of existing studies have confirmed that people with vitiligo are prone to mental disorders, these observational studies may be subject to confounding factors and reverse causality, so the true causal relationship is inconclusive. We conducted a bidirectional Mendelian randomization (MR) analysis to assess the causality between vitiligo and mental disorders, namely depression, anxiety, insomnia, schizophrenia, bipolar disorder, obsessive-compulsive disorder (OCD) and attention-deficit hyperactivity disorder (ADHD). Summary statistics from large available genome-wide association study (GWAS) datasets for generalized vitiligo (n = 44 266), depression (n = 173 005), anxiety (n = 17 310), insomnia (n = 386 988), schizophrenia (n = 130 644), bipolar disorder (n = 413 466), OCD (n = 9725) and ADHD (n = 225 534) were utilized. Inverse-variance weighted (IVW), MR-Egger and weighted median were employed to estimate causal effects. Sensitivity analysis and MR Pleiotropy Residual Sum and Outliers (MR PRESSO) were conducted to assess heterogeneity and pleiotropy, ensuring the robustness of the results. Additionally, we corrected for estimating bias that might be brought on by sample overlap using MRlap. In our findings, none of the rigorous bidirectional MR analyses uncovered a significant causal association. Even after applying the MRlap correction, the effect sizes remained statistically nonsignificant, thereby reinforcing the conclusions drawn via IVW. In summary, our genetic-level investigation did not reveal a causal link between generalized vitiligo and mental disorders.


Assuntos
Transtornos Mentais , Distúrbios do Início e da Manutenção do Sono , Vitiligo , Humanos , Vitiligo/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Transtornos Mentais/genética
6.
Neurochem Res ; 49(8): 2197-2214, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834846

RESUMO

Neuroinflammation and endothelial cell apoptosis are prominent features of blood-brain barrier (BBB) disruption, which have been described in Alzheimer's disease (AD) and can predict cognitive decline. Recent reports revealed vascular ß-amyloid (Aß) deposits, Muller cell degeneration and microglial dysfunction in the retina of AD patients. However, there has been no in-depth research on the roles of inflammation, retinal endothelial cell apoptosis, and blood-retinal barrier (BRB) damage in AD retinopathy. We found that Raddeanin A (RDA) could improve pathological and cognitive deficits in a mouse model of Alzheimer's disease by targeting ß-amyloidosis, However, the effects of RDA on AD retinal function require further study. To clarify whether RDA inhibits inflammation and apoptosis and thus improves BRB function in AD-related retinopathy. In vitro we used Aß-treated HRECs and MIO-M1 cells, and in vivo we used 3×Tg-AD mice to investigate the effect of RDA on BRB in AD-related retinopathy. We found that RDA could improve BRB function in AD-related retinopathy by inhibiting NLRP3-mediated inflammation and suppressing Wnt/ß-catenin pathway-mediated apoptosis, which is expected to improve the pathological changes in AD-related retinopathy and the quality of life of AD patients.


Assuntos
Doença de Alzheimer , Apoptose , Barreira Hematorretiniana , Camundongos Transgênicos , Retina , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Apoptose/efeitos dos fármacos , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Camundongos , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Camundongos Endogâmicos C57BL , Humanos , Peptídeos beta-Amiloides/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , Masculino
7.
Pharmacol Res ; 200: 107068, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232908

RESUMO

Leukopenia is the most common side effect of chemotherapy and radiotherapy. It potentially deteriorates into a life-threatening complication in cancer patients. Despite several agents being approved for clinical administration, there are still high incidences of pathogen-related disease due to a lack of functional immune cells. ADP-ribosyl cyclase of CD38 displays a regulatory effect on leukopoiesis and the immune system. To explore whether the ADP-ribosyl cyclase was a potential therapeutic target of leukopenia. We established a drug screening model based on an ADP-ribosyl cyclase-based pharmacophore generation algorithm and discovered three novel ADP-ribosyl cyclase agonists: ziyuglycoside II (ZGSII), brevifolincarboxylic acid (BA), and 3,4-dihydroxy-5-methoxybenzoic acid (DMA). Then, in vitro experiments demonstrated that these three natural compounds significantly promoted myeloid differentiation and antibacterial activity in NB4 cells. In vivo, experiments confirmed that the compounds also stimulated the recovery of leukocytes in irradiation-induced mice and zebrafish. The mechanism was investigated by network pharmacology, and the top 12 biological processes and the top 20 signaling pathways were obtained by intersecting target genes among ZGSII, BA, DMA, and leukopenia. The potential signaling molecules involved were further explored through experiments. Finally, the ADP-ribosyl cyclase agonists (ZGSII, BA, and DMA) has been found to regenerate microbicidal myeloid cells to effectively ameliorate leukopenia-associated infection by activating CD38/ADP-ribosyl cyclase-Ca2+-NFAT. In summary, this study constructs a drug screening model to discover active compounds against leukopenia, reveals the critical roles of ADP-ribosyl cyclase in promoting myeloid differentiation and the immune response, and provides a promising strategy for the treatment of radiation-induced leukopenia.


Assuntos
Antígenos CD , Leucopenia , Humanos , Camundongos , Animais , ADP-Ribosil Ciclase/metabolismo , ADP-Ribosil Ciclase 1 , Antígenos CD/genética , Antígenos de Diferenciação/genética , Glicoproteínas de Membrana , Peixe-Zebra/metabolismo , Leucopenia/induzido quimicamente , Leucopenia/tratamento farmacológico
8.
J Chem Inf Model ; 64(16): 6506-6520, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39109515

RESUMO

Thrombocytopenia, which is associated with thrombopoietin (TPO) deficiency, presents very limited treatment options and can lead to life-threatening complications. Discovering new therapeutic agents against thrombocytopenia has proven to be a challenging task using traditional screening approaches. Fortunately, machine learning (ML) techniques offer a rapid avenue for exploring chemical space, thereby increasing the likelihood of uncovering new drug candidates. In this study, we focused on computational modeling for drug-induced megakaryocyte differentiation and platelet production using ML methods, aiming to gain insights into the structural characteristics of hematopoietic activity. We developed 112 different classifiers by combining eight ML algorithms with 14 molecule features. The top-performing model achieved good results on both 5-fold cross-validation (with an accuracy of 81.6% and MCC value of 0.589) and external validation (with an accuracy of 83.1% and MCC value of 0.642). Additionally, by leveraging the Shapley additive explanations method, the best model provided quantitative assessments of molecular properties and structures that significantly contributed to the predictions. Furthermore, we employed an ensemble strategy to integrate predictions from multiple models and performed in silico predictions for new molecules with potential activity against thrombocytopenia, sourced from traditional Chinese medicine and the Drug Repurposing Hub. The findings of this study could offer valuable insights into the structural characteristics and computational prediction of thrombopoiesis inducers.


Assuntos
Aprendizado de Máquina , Trombocitopenia , Trombocitopenia/tratamento farmacológico , Humanos , Descoberta de Drogas/métodos , Megacariócitos/metabolismo , Megacariócitos/efeitos dos fármacos , Megacariócitos/citologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Simulação por Computador , Algoritmos
9.
Mol Divers ; 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39210217

RESUMO

The activating V617F mutation in Janus kinase 2 (JAK2) has been shown to be the major cause for classic Philadelphia-negative myeloproliferative neoplasms (MPNs). Thus, the development of pharmacologic JAK2 inhibitors is an essential move in combating MPNs. In this study, screening methods examining both ligands and their structures were developed to discover novel JAK2 inhibitors from the ChemDiv database with virtual screening identifying 886 candidate inhibitors. Next, these compounds were further filtered using ADMET, drug likeliness, and PAINS filtering, which reduced the compound number even further. This consolidated list of candidate compounds (n = 49) was then evaluated biologically at molecular level and the highest performing inhibitor with a novel scaffold was selected for further examination. This candidate inhibitor, CD4, was then subjected to molecular dynamics studies, with complex stability, root-mean-square deviation, radius of gyration, binding free energy, and binding properties all examined. The result suggested that CD4 interacts with JAK2 and that the CD4-JAK2 complex is stable. This study was able to identify a candidate inhibitor that warrants further examination and optimization and may potentially serve as a future MPN treatment.

10.
Phytother Res ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152726

RESUMO

Harmine (HM), a ß-carboline alkaloid extracted from plants, is a crucial component of traditional Chinese medicine (TCM) known for its diverse pharmacological activities. Thrombocytopenia, a common and challenging hematological disorder, often coexists with serious illnesses. Previous research has shown a correlation between HM and thrombocytopenia, but the mechanism needs further elucidation. The aim of this study was to clarify the mechanisms underlying the effects of HM on thrombocytopenia and to develop new therapeutic strategies. Flow cytometry, Giemsa staining, and Phalloidin staining were used to assess HM's impact on Meg-01 and HEL cell differentiation and maturation in vitro. A radiation-induced thrombocytopenic mouse model was employed to evaluate HM's effect on platelet production in vivo. Network pharmacology, molecular docking, and protein blotting were utilized to investigate HM's targets and mechanisms. The results demonstrated that HM dose-dependently promoted Meg-01 and HEL cell differentiation and maturation in vitro and restored platelet levels in irradiated mice in vivo. Subsequently, HM was found to be involved in the biological process of platelet production by upregulating the expressions of Rac1, Cdc42, JNK, and 5-HTR2A. Furthermore, the targeting of HM to 5-HTR2A and its correlation with downstream Rac1/Cdc42/JNK were also confirmed. In conclusion, HM regulates megakaryocyte differentiation and thrombopoiesis through the 5-HTR2A and Rac1/Cdc42/JNK pathways, providing a potential treatment strategy for thrombocytopenia.

11.
Phytother Res ; 38(9): 4815-4831, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39225174

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by complex pathogenesis mechanisms. Among these, ß-amyloid plaques and hyperphosphorylated Tau protein tangles have been identified as significant contributors to neuronal damage. This study investigates thonningianin A (TA) from Penthorum chinense Pursh (PCP) as a potential inhibitor targeting these pivotal proteins in AD progression. The inhibitory potential of PCP and TA on Aß fibrillization was initially investigated. Subsequently, ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry and biolayer interferometry were employed to determine TA's affinity for both Aß and Tau. The inhibitory effects of TA on the levels and cytotoxicity of AD-related proteins were then assessed. In 3xTg-AD mice, the therapeutic potential of TA was evaluated. Additionally, the molecular interactions between TA and either Aß or Tau were explored using molecular docking. We found that PCP-total ethanol extract and TA significantly inhibited Aß fibrillization. Additionally, TA demonstrated strong affinity to Aß and Tau, reduced levels of amyloid precursor protein and Tau, and alleviated mitochondrial distress in PC-12 cells. In 3xTg-AD mice, TA improved cognition, reduced Aß and Tau pathology, and strengthened neurons. Moreover, molecular analyses revealed efficient binding of TA to Aß and Tau. In conclusion, TA, derived from PCP, shows significant neuroprotection against AD proteins, highlighting its potential as an anti-AD drug candidate.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Simulação de Acoplamento Molecular , Proteínas tau , Animais , Masculino , Camundongos , Ratos , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Células PC12 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Proteínas tau/metabolismo
12.
J Craniofac Surg ; 35(1): 150-153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37754755

RESUMO

PURPOSE: To analyze the epidemiology, pattern, and prevent measurement of pediatric maxillofacial trauma in Xinjiang, China. PATIENTS AND METHODS: Clinical records of patients aged 0 to 18 years with maxillofacial trauma over the 5 years were reviewed. Epidemiological features of data were collected for the cause of injury, age and sex distribution, frequency and type of injury, localization and frequency of soft tissue injuries, facial bone fractures, and presence of associated injuries. Statistical analyses performed included descriptive analysis, χ 2 test, and logistic regression analyses. RESULTS: Among the 450 patients, 333 were male and 117 were female, with a male-to-female ratio of 3.8:1, the mean age was 9.2±5.4 years; 223 cases were soft tissue injuries and 227 cases were maxillofacial fractures. The 16 to 18-year-old group was the highest, with the prevalence of maxillofacial fractures. The most common cause of pediatric maxillofacial trauma was traffic injuries. CONCLUSION: The incidence of maxillofacial trauma in pediatric patients correlates with a number of factors, including age, sex, and etiology of trauma. The 16 to 18-year-old group is the most prevalent group for maxillofacial trauma in pediatric patients, and traffic accidents are the leading cause of maxillofacial trauma in pediatric patients.


Assuntos
Traumatismos Maxilofaciais , Fraturas Cranianas , Lesões dos Tecidos Moles , Criança , Humanos , Masculino , Feminino , Pré-Escolar , Adolescente , Estudos Retrospectivos , Traumatismos Maxilofaciais/epidemiologia , Fraturas Cranianas/epidemiologia , Acidentes de Trânsito , Lesões dos Tecidos Moles/epidemiologia
13.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474281

RESUMO

As the principal ligand for NKG2D, MICA elicits the recruitment of subsets of T cells and NK cells in innate immunity. MICA gene variants greatly impact the functionality and expression of MICA in humans. The current study evaluated whether MICA polymorphisms distinctively influence the pathogenesis of psoriasis (PSO), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) in Taiwanese subjects. The distributions of MICA alleles and levels of serum soluble NKG2D were compared between healthy controls and patients with PSO, RA, and SLE, respectively. The binding capacities and cell surface densities of MICA alleles were assessed by utilizing stable cell lines expressing four prominent Taiwanese MICA alleles. Our data revealed that MICA*010 was significantly associated with risks for PSO and RA (PFDR = 1.93 × 10-15 and 0.00112, respectively), while MICA*045 was significantly associated with predisposition to SLE (PFDR = 0.0002). On the other hand, MICA*002 was associated with protection against RA development (PFDR = 4.16 × 10-6), while MICA*009 was associated with a low risk for PSO (PFDR = 0.0058). MICA*002 exhibited the highest binding affinity for NKG2D compared to the other MICA alleles. Serum concentrations of soluble MICA were significantly elevated in SLE patients compared to healthy controls (p = 0.01). The lack of cell surface expression of the MICA*010 was caused by its entrapment in the endoplasmic reticulum. As a prevalent risk factor for PSO and RA, MICA*010 is deficient in cell surface expression and is unable to interact with NKG2D. Our study suggests that MICA alleles distinctively contribute to the pathogenesis of PSO, RA, and SLE in Taiwanese people.


Assuntos
Artrite Reumatoide , População do Leste Asiático , Lúpus Eritematoso Sistêmico , Humanos , Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe I/genética , Lúpus Eritematoso Sistêmico/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Polimorfismo Genético
14.
BMC Bioinformatics ; 24(1): 338, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37697256

RESUMO

BACKGROUND: The human gut microbiome (HGM), consisting of trillions of microorganisms, is crucial to human health. Adverse drug use is one of the most important causes of HGM disorder. Thus, it is necessary to identify drugs or compounds with anti-commensal effects on HGM in the early drug discovery stage. This study proposes a novel anti-commensal effects classification using a machine learning method and optimal molecular features. To improve the prediction performance, we explored combinations of six fingerprints and three descriptors to filter the best characterization as molecular features. RESULTS: The final consensus model based on optimal features yielded the F1-score of 0.725 ± 0.014, ACC of 82.9 ± 0.7%, and AUC of 0.791 ± 0.009 for five-fold cross-validation. In addition, this novel model outperformed the prior studies by using the same algorithm. Furthermore, the important chemical descriptors and misclassified anti-commensal compounds are analyzed to better understand and interpret the model. Finally, seven structural alerts responsible for the chemical anti-commensal effect are identified, implying valuable information for drug design. CONCLUSION: Our study would be a promising tool for screening anti-commensal compounds in the early stage of drug discovery and assessing the potential risks of these drugs in vivo.


Assuntos
Microbioma Gastrointestinal , Humanos , Projetos de Pesquisa , Algoritmos , Consenso , Aprendizado de Máquina
15.
Electrophoresis ; 44(21-22): 1664-1673, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37621032

RESUMO

Molecular interactions play a vital role in regulating various physiological and biochemical processes in vivo. Kinetic capillary electrophoresis (KCE) is an analytical platform that offers significant advantages in studying the thermodynamic and kinetic parameters of molecular interactions. It enables the simultaneous analysis of these parameters within an interaction pattern and facilitates the screening of binding ligands with predetermined kinetic parameters. Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) was the first proposed KCE method, and it has found widespread use in studying molecular interactions involving proteins/aptamers, proteins/small molecules, and peptides/small molecules. The successful applications of NECEEM have demonstrated its promising potential for further development and broader application. However, there has been a dearth of recent reviews on NECEEM. To address this gap, our study provides a comprehensive description of NECEEM, encompassing its origins, development, and applications from 2015 to 2022. The primary focus of the applications section is on aptamer selection and screening of small-molecule ligands. Furthermore, we discuss important considerations in NECEEM experimental design, such as buffer suitability, detector selection, and protein adsorption. By offering this thorough review, we aim to contribute to the understanding, advancement, and wider utilization of NECEEM as a valuable tool for studying molecular interactions and facilitating the identification of potential ligands and targets.


Assuntos
Aptâmeros de Nucleotídeos , Proteínas , Oligonucleotídeos/química , Termodinâmica , Eletroforese Capilar/métodos , Aptâmeros de Nucleotídeos/química
16.
Haematologica ; 108(5): 1394-1411, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36546424

RESUMO

Thrombocytopenia is a thrombopoietin (TPO)-related disorder with very limited treatment options, and can be lifethreatening. There are major problems with typical thrombopoietic agents targeting TPO signaling, so it is urgent to discover a novel TPO-independent mechanism involving thrombopoiesis and potential druggable targets. We developed a drug screening model by the multi-grained cascade forest (gcForest) algorithm and found that 3,8-di-O-methylellagic acid 2- O-glucoside (DMAG) (10, 20 and 40 µM) promoted megakaryocyte differentiation in vitro. Subsequent investigations revealed that DMAG (40 mM) activated ERK1/2, HIF-1b and NF-E2. Inhibition of ERK1/2 blocked megakaryocyte differentiation and attenuated the upregulation of HIF-1b and NF-E2 induced by DMAG. Megakaryocyte differentiation induced by DMAG was inhibited via knockdown of NF-E2. In vivo studies showed that DMAG (5 mg/kg) accelerated platelet recovery and megakaryocyte differentiation in mice with thrombocytopenia. The platelet count of the DMAG-treated group recovered to almost 72% and 96% of the count in the control group at day 10 and 14, respectively. The platelet counts in the DMAG-treated group were almost 1.5- and 1.3-fold higher compared with those of the irradiated group at day 10 and 14, respectively. Moreover, DMAG (10, 25 and 50 mM) stimulated thrombopoiesis in zebrafish. DMAG (5 mg/kg) could also increase platelet levels in c-MPL knockout (c-MPL-/-) mice. In summary, we established a drug screening model through gcForest and demonstrated that DMAG promotes megakaryocyte differentiation via the ERK/HIF1/NF-E2 pathway which, importantly, is independent of the classical TPO/c-MPL pathway. The present study may provide new insights into drug discovery for thrombopoiesis and TPO-independent regulation of thrombopoiesis, as well as a promising avenue for thrombocytopenia treatment.


Assuntos
Anemia , Trombocitopenia , Animais , Camundongos , Anemia/metabolismo , Plaquetas/metabolismo , Megacariócitos/metabolismo , Trombocitopenia/metabolismo , Trombopoese/fisiologia , Trombopoetina/uso terapêutico , Peixe-Zebra/metabolismo , Glucosídeos/uso terapêutico
17.
Nutr Neurosci ; 26(1): 11-24, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34927571

RESUMO

OBJECTIVES: Parkinson's disease (PD) is the second most common neurodegenerative disease. Chlorogenic acid (CGA) is a polyphenolic substance derived from various medicinal plants. Although CGA is reported to have potential anti-PD effect, the beneficial effect and the underlying mechanism remain unclear. In this study, we aimed to further investigate the protective effect and clarify the mechanism of action of CGA in Caenorhabditis elegans (C. elegans) models of PD. METHODS: Measurements of a-synuclein aggregation, movement disorders, and lipid, ROS and malondialdehyde (MDA) contents were observed in NL5901 nematodes. Determinations of dopamine (DA) neuron degeneration, food perception, and ROS content were performed in 6-OHDA-exposed BZ555 nematodes. The autophagy activation of CGA was monitored using DA2123 and BC12921 nematodes. Meanwhile, RNAi technology was employed to knockdown the autophagy-related genes and investigate whether the anti-PD effect of CGA was associated with autophagy induction in C. elegans. RESULTS: CGA significantly reduced α-synuclein aggregation, improved motor disorders, restored lipid content, and decreased ROS and MDA contents in NL5901 nematodes. Meanwhile, CGA inhibited DA neuron-degeneration and improved food-sensing behavior in 6-OHDA-exposed BZ555 nematodes. In addition, CGA increased the number of GFP::LGG-1 foci in DA2123 nematodes and degraded p62 protein in BC12921 nematodes. Meanwhile, CGA up-regulated the expression of autophagy-related genes in NL5901 nematodes. Moreover, the anti-PD effect of CGA was closely related to autophagy induction via increasing the expression of autophagy-related genes, including unc-51, bec-1, vps-34, and lgg-1. CONCLUSIONS: The present study indicates that CGA exerts neuroprotective effect in C. elegans via autophagy induction.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Doença de Parkinson/metabolismo , Caenorhabditis elegans , Ácido Clorogênico/farmacologia , Ácido Clorogênico/metabolismo , Animais Geneticamente Modificados , Doenças Neurodegenerativas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxidopamina , Degeneração Neural , Autofagia , Lipídeos , Neurônios Dopaminérgicos , Modelos Animais de Doenças
18.
Mol Divers ; 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38006563

RESUMO

The overactivation of Janus kinases 2 (JAK2) by gain-of-function mutations in the JAK2, Myeloproliferative leukemia virus oncogene, or Calreticulin genes are the most important factor in the development of Philadelphia-negative myeloproliferative neoplasms (MPNs). The discovery of the JAK2V617F mutation is a significant breakthrough in understanding the pathogenesis of MPNs, and inhibition of JAK2 abnormal activation has become one of the most effective strategies against MPNs. Currently, three JAK2 inhibitors for treating MPNs have been approved, and several are being evaluated in clinical trials. However, persistent challenges in terms of drug resistance and off-target effects remain unresolved. In this review, we introduce and classify the available JAK2 inhibitors in terms of their mechanisms and clinical considerations. Additionally, through an analysis of target points, binding modes, and structure-activity inhibitor relationships, we propose strategies such as combination therapy and allosteric inhibitors to overcome specific challenges. This review offers valuable insights into current trends and future directions for optimal management of MPNs using JAK2 inhibitors.

19.
Transfus Med ; 33(1): 68-74, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36308061

RESUMO

OBJECTIVE: We aimed to develop accurate and user-friendly genetic assays to identify the inherited neutrophil antigen-2 (HNA-2) deficiency in humans. BACKGROUND: HNA-2 is one of the most important neutrophil antigens implicated in a number of human disorders. HNA-2 deficiency or HNA-2 null is a common phenotype observed in 3%-5% Americans. HNA-2 null individuals are at risk to produce isoantibodies (or alloantibodies) that play important roles in transfusion-related acute lung injury, immune neutropenia, and bone marrow graft failure. We previously demonstrated that the CD177 coding SNP 787A > T (c.787A > T) is the most important genetic determinant for HNA-2 deficiency. However, reliable genetic assays are not available for routine clinical laboratory application up to now. STUDY DESIGN AND METHODS: A novel polymerase chain reaction (PCR) strategy was used to determine genotypes of the CD177 SNP c.787A > T. In the simplified PCR assay, all allele specific primers and internal control primers were included in the same reaction, which ensures reliability of the assay. In addition, a novel high-throughput nested TaqMan assay was developed to determine genotypes of c.787A > T for large population genetic analysis of HNA-2 deficiency. RESULTS: CD177 SNP c787A > T genotypes of 396 subjects were 100% concordant among the single PCR reaction method, the nested TaqMan assay, and Sanger Sequencing analysis. Out of 396 subjects, all 18 donors with the CD177 STP homozygous genotype were HNA-2 null. CONCLUSION: The novel PCR-based genotyping assay is accurate to identify HNA-2 deficient individuals and is suitable for clinical laboratories. In addition, the innovative high-throughput nested TaqMan assay will be useful for large-scale population screens and genetic studies of HNA-2 deficiency.


Assuntos
Isoantígenos , Neutrófilos , Humanos , Reprodutibilidade dos Testes , Isoantígenos/genética , Genótipo , Homozigoto
20.
Phytother Res ; 37(9): 4265-4281, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37260161

RESUMO

Sanguisorba officinalis L., a traditional Chinese medicine, is frequently used to treat burns and scalds. But even so, it is unknown whether S. officinalis L. can accelerate diabetic wounds (DW) healing. Here, to bridge the gap, we employed in vivo and in vitro evaluations to assess the positive effect of S. officinalis L. ethanol extract (ESO) on DW. Results demonstrated that ESO dramatically improved the DW healing rate. With ESO treatment, the inappropriately elevated levels of IL6, IL1ß and TNFα in DW were reduced, while the expression of IL10 was increased, indicating that the abnormal inflammation in DW was also under control. Moreover, the abnormally elevated expression of CD86 was significantly inhibited and the expression of CD206 was significantly up-regulated following treatment with ESO. The global level of NF-κB protein was not affected by ESO treatment, but it suppressed the expression of phosphorylated NF-κB and prevented its nuclear entry. In addition, in RAW264.7 cells activated with lipopolysaccharide (LPS), the expression of NLRP3, Caspase1 and IL1ß were significantly diminished following ESO treatment. In conclusion, ESO was proved to be a promising treatment for DW healing due to its potential to accelerate the healing process by suppressing the inflammatory response. This was achieved by increasing the ratio of M2 to M1 polarization through blocking the NF-κB/NLRP3 signaling pathway.


Assuntos
Queimaduras , Diabetes Mellitus , Sanguisorba , Ratos , Animais , NF-kappa B/metabolismo , Sanguisorba/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cicatrização , Macrófagos , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa