Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Molecules ; 27(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432018

RESUMO

The accurate and sensitive detection of biomolecules by surface-enhanced Raman spectroscopy (SERS) is possible, but remains challenging due to the interference from biomolecules in complex samples. Herein, a new SERS sensor is developed for background-free detection of hydrogen peroxide (H2O2) with an ultralow detection limit (1 × 10-10 mol/L), using a Raman-silent strategy. The Au microparticles (Au-RSMPs) resembling rose-stones are devised as SERS substrates with a high enhancement effect, and 4-mercaptophenylboronic acid (4-MPBA) is selected as an H2O2-responsive Raman reporter. Upon the reaction with H2O2, the phenylboronic group of 4-MPBA was converted to a phenol group, which subsequently reacted with 4-diazonium-phenylalkyne (4-DP), an alkyne-carrying molecule via the azo reaction. The formed product exhibits an intense and sharp SERS signal in the Raman-silent region, avoiding interference of impurities and biomolecules. As a proof-of-concept demonstration, we show that this SERS sensor possesses significant merits towards the determination of H2O2 in terms of broad linear range, low limit of detection, and high selectivity, showing promise for the quantitative analysis of H2O2 in complicated biological samples.


Assuntos
Peróxido de Hidrogênio , Análise Espectral Raman , Análise Espectral Raman/métodos , Alcinos/química
2.
Langmuir ; 32(7): 1685-92, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26829548

RESUMO

Although a few architectures have been fabricated by the self-assembly of natural triterpenoids, the precise control of shape and size is rarely studied. Herein, a methyl oleanolate-bearing amphiphile, 1-[2-(methyl oleanolate)-2-oxoethyl]pyridinium bromide (MOP), has been designed and its assembly behavior was investigated. It was found that the morphologies of MOP assemblies ranged from nanoparticles to rigid microrods and flexible nanofibers in chloroform/p-xylene and methanol/water, respectively. During the assembly process, the systematical variational solvophobic/solvophilic effect resulted in the formation of spherical nanoparticles with opposite dipoles and converse bilayer structures. Moreover, such opposite molecular orientations lead to the inversion of supramolecular chirality and distinct mechanical properties. The driving forces and packing patterns of MOP in each solvent system were clearly demonstrated by the combination of NMR, UV-vis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), theoretical computation, and contact angle experiments, which revealed the roles of triterpenoids and pyridinium cations in the assembly process. This work provides a facile strategy to control the supramolecular structures in triterpenoid-based assemblies by adjusting the solvent polarity and composition.

3.
Soft Matter ; 12(44): 8979-8982, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27774543

RESUMO

Taking a natural triterpenoid as the building block, we have regulated a pyridinium-functionalized methyl glycyrrhetate (C4-MGP) into P-type helices in water primarily driven by hydrophobic forces. By analysing their temperature-dependent CD and UV-Vis spectra, these hierarchical chiral assemblies were found to be formed in a cooperative supramolecular polymerization manner.

4.
Artigo em Inglês | MEDLINE | ID: mdl-27421690

RESUMO

BACKGROUND: Diabetic peripheral neuropathy (DPN) is the most common chronic complication of diabetes. We aim to investigate the efficacy of Prostaglandin E1 (PGE1) treatment in addition to intensive insulin therapy on DPN in patients with type 2 diabetes. METHODS: Seventy-seven patients with DPN received daily intravenous injection of Prostaglandin E1 (PGE1) in lipid microspheres (Lipo-PGE1) for 10days as an additional therapy to standard glucose control therapy (PGE1 group). Another 42 patients with DPN receiving only standard glucose control therapy (intensive insulin therapy) acted as a control group. Michigan neuropathy screening instrument (MNSI) score, neurophysiology examination, transcutaneous oxygen sensory threshold, and ankle-brachial index (ABI) were measured to evaluate the efficacy of PGE1 treatment as compared with control group. RESULTS: Standard glucose control therapy decreased plasma glucose to a similar level in both PGE1 and control groups. Compare to control group, PGE1 group displayed improvement in several nerve electrophysiological indexes. MNSI score was significantly improved in patients who received PGE1 treatment compared with the control group (p<0.001) after 10days of PGE1 treatment. Similarly, nerve conduction velocity and foot sensory thresholds (p<0.05 for all) also significantly improved compared with the control group after 10days of PGE1 treatment. However, only intensive insulin therapy did not improve any neural function. CONCLUSIONS: Lipo-PGE1 can effectively improve neural function of patients with DPN.


Assuntos
Alprostadil/farmacologia , Diabetes Mellitus Tipo 2/complicações , Neuropatias Diabéticas/complicações , Neuropatias Diabéticas/tratamento farmacológico , Alprostadil/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
5.
Front Endocrinol (Lausanne) ; 15: 1364585, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774225

RESUMO

Aim: To evaluate the efficacy and safety of URLi (ultra rapid lispro insulin) compared to insulin lispro as bolus insulin with basal insulin using CGM in the individuals with type 2 diabetes(T2D) in China. Methods: This was a double-blind, randomized, parallel, prospective, phase 3 study. Subjects with uncontrolled T2D were recruited and randomized 1:2 into the insulin lispro and URLi groups. Subjects received a consistent basal insulin regimen during the study and self-administered insulin lispro or URLi before each meal throughout the treatment period. Subjects underwent a 3-day continuous glucose monitoring (CGM) at the baseline and endpoint respectively, and then CGM data were analyzed. The primary endpoint was to compare the difference in postprandial glucose (PPG) control using CGM between the two groups. Results: A total of 57 subjects with T2D completed the study. Our CGM data showed that postprandial glucose excursions after breakfast (BPPGE) in the URLi group was lower than that in the insulin lispro group (1.59 ± 1.57 mmol/L vs 2.51 ± 1.73 mmol/L, p = 0.046). 1-hour PPG was observed to decrease more in the URLi group than that in the insulin lispro group (-1.37 ± 3.28 mmol/L vs 0.24 ± 2.58 mmol/L, p = 0.047). 2-hour PPG was observed to decrease more in the URLi group than that in the insulin lispro group (-1.12 ± 4.00 mmol/L vs 1.22 ± 2.90 mmol/L, p = 0.021). The mean HbA1c level decreased by 1.1% in the URLi group and 0.99% in the insulin lispro group, with no treatment difference (p = 0.642). In the CGM profile, TBR was not significantly different between the two groups (p = 0.743). The weight gain also did not differ between the two groups (p = 0.303). Conclusion: URLi can control breakfast PPG better than insulin lispro in adults with T2D in China, while it is non-inferior in improving HbA1c. The incidence of hypoglycemic and weight gain were similar between the two groups.


Assuntos
Automonitorização da Glicemia , Glicemia , Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Insulina Lispro , Período Pós-Prandial , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Insulina Lispro/uso terapêutico , Insulina Lispro/administração & dosagem , Masculino , Feminino , Pessoa de Meia-Idade , Glicemia/análise , China/epidemiologia , Método Duplo-Cego , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/administração & dosagem , Automonitorização da Glicemia/métodos , Estudos Prospectivos , Controle Glicêmico/métodos , Adulto , Idoso , Hemoglobinas Glicadas/análise , Quimioterapia Combinada
6.
Int J Biol Macromol ; 266(Pt 1): 130838, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521322

RESUMO

Innovative antibacterial therapies using nanomaterials, such as photothermal (PTT) and photodynamic (PDT) treatments, have been developed for treating wound infections. However, creating secure wound dressings with these therapies faces challenges. The primary focus of this study is to prepare an antibacterial nanofiber dressing that effectively incorporates stable loads of functional nanoparticles and demonstrates an efficient synergistic effect between PTT and PDT. Herein, a composite nanofiber mat was fabricated, integrating spherical molybdenum disulfide (MoS2) nanoparticles. MoS2 was deposited onto polylactic acid (PLA) nanofiber mats using vacuum filtration, which was further stabilized by sodium carboxymethyl cellulose (CMC) adhesion and glutaraldehyde (GA) cross-linking. The composite nanofibers demonstrated synergistic antibacterial effects under NIR light irradiation, and the underlying mechanism was explored. They induce bacterial membrane permeability, protein leakage, and intracellular reactive oxygen species (ROS) elevation, ultimately leading to >95 % antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which is higher than that of single thermotherapy (almost no antibacterial activity) or ROS therapy (about 80 %). In addition, the composite nanofiber mats exhibited promotion effects on infected wound healing in vivo. This study demonstrates the great prospects of composite nanofiber dressings in clinical treatment of bacterial-infected wounds.


Assuntos
Antibacterianos , Carboximetilcelulose Sódica , Dissulfetos , Escherichia coli , Molibdênio , Nanofibras , Fotoquimioterapia , Staphylococcus aureus , Molibdênio/química , Molibdênio/farmacologia , Dissulfetos/química , Dissulfetos/farmacologia , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Fotoquimioterapia/métodos , Carboximetilcelulose Sódica/química , Carboximetilcelulose Sódica/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Escherichia coli/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Terapia Fototérmica/métodos , Bandagens
7.
Bioconjug Chem ; 24(8): 1302-13, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23876026

RESUMO

Regulation of cell migration by cell growth factors is critical in tissue regeneration such as angiogenesis, wound healing, and bone formation. In this work, basic fibroblast growth factor (bFGF) with a density varying between 0 and 295 ng/cm2 was conjugated on heparinized glass slides. The amount of conjugated bFGF was determined by immunofluorescent staining. The mobility of vascular smooth muscle cells (VSMCs) was largely dominated by the bFGF density, whereas that of mesenchymal stem cells (MSCs) and endothelial cells (ECs) was slightly influenced. The migration rate of VSMCs increased initially and then decreased along with the increase of bFGF density. The fastest rate (22 µm/h) was found on the bFGF surface with a density of 83 ng/cm2. The intrinsic mechanisms of the diverse migration behaviors of the VSMCs, MSCs, and ECs were revealed by studying the expression of bFGF receptors and migration-related proteins. The results show that the cell mobility is regulated by complex and synergetic intracellular signals in a cell type-dependent manner.


Assuntos
Movimento Celular/efeitos dos fármacos , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Heparina/metabolismo , Animais , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Ratos , Propriedades de Superfície
8.
Beilstein J Org Chem ; 9: 2877-85, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367453

RESUMO

We describe herein the two-component charge-transfer (CT) interaction induced organogel formation with 18ß-glycyrrhetinic acid appended pyrene (GA-pyrene, 3) as the donor, and 2,4,7-trinitrofluorenone (TNF, 4) as the acceptor. The use of TNF (4) as a versatile electron acceptor in the formation of CT gels is demonstrated through the formation of gels in a variety of solvents. Thermal stability, stoichiometry, scanning electron microscopy (SEM), optical micrographs, and circular dichroism (CD) are performed on these CT gels to investigate their thermal and assembly properties. UV-vis, fluorescence, mass spectrometric as well as variable-temperature (1)H NMR experiments on these gels suggest that the CT interaction is one of the major driving forces for the formation of these organogels.

9.
Polymers (Basel) ; 15(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37571208

RESUMO

Detergency determination for single polymeric fibers is of significant importance to screening effective detergents for laundry, but remains challenging. Herein, we demonstrate a novel and effective method to quantify the detergency for single polymeric fibers using a confocal laser scanning microscope (CLSM). It was applied to visualize the oil-removing process of single polymeric fibers and thus assess the detergency of various detergents. Four typical surfactants were selected for comparison, and a compounded detergent containing multiple components (e.g., anionic and nonionic surfactants, enzymes) was demonstrated to be the most effective and powerful soil-removing detergent because more than 50% of oil on the cotton fiber could be easily removed. Moreover, the oil removal process of three kinds of fibers (i.e., cotton, viscose, and polyester) was imaged and monitored by confocal microscopy. It was found that the percentage of the detergency of a single polyester fiber exceeded 70%, which is much higher than that of cotton and viscose fibers (~50%), which may be due to its relatively smooth surface. Compared to traditional methods, the CLSM imaging method is more feasible and effective to determine the detergency of detergents for single polymeric fibers.

10.
Biointerphases ; 18(2)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37096904

RESUMO

Oily wastewater discharged by industrial development is an important factor causing water pollution. Membrane separation technology has the advantages of low cost, simple operation, and high efficiency in the treatment of oily wastewater. However, membrane materials are easily eroded by microorganisms during long-term storage or use, thereby resulting in reduced separation efficiency. Herein, a zeolite imidazole skeleton-8@silver nanocluster composite polyacrylonitrile (ZIF-8@AgNCs/PAN) nanofibrous membrane was fabricated by electrospinning and in situ growth technology. The surface chemistry, morphology, and wettability of the composite membranes were characterized. The carboxyl groups on the surface of hydrolyzed PAN nanofibers, which can be complexed with zinc ions (Zn2+), are utilized as growth sites for porous metal organic frameworks (ZIF-8). Meanwhile, AgNCs are loaded into ZIF-8 to achieve stable hybridization of ZIF-8@AgNCs and nanofibers. The loading quantity of ZIF-8@AgNCs, which can dominantly affect the surface roughness and the porosity of the membranes, is regulated by the feeding amount of AgNCs. The ZIF-8@AgNCs/PAN membrane achieves effective oil-water separation with high separation efficiency toward petroleum ether-in-water emulsion (98.6%) and permeability (62 456 ± 1343 Lm-2 h-1 bar-1). Furthermore, the ZIF-8@AgNCs/PAN membrane possesses high antibacterial activity against Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), which is beneficial for the long-term storage and use of the membrane.


Assuntos
Nanofibras , Zeolitas , Prata/química , Nanofibras/química , Emulsões/química , Staphylococcus aureus , Escherichia coli , Águas Residuárias , Antibacterianos/química , Esqueleto , Água , Imidazóis
11.
J Mater Chem B ; 11(33): 8046-8055, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37539498

RESUMO

In most circumstances, wounds face the challenges of bacterial invasions and inappropriate inflammatory responses when they lack proper wound management. Endowing dressings with both antibacterial and anti-inflammatory functions is a compelling strategy for resolving the above issues. However, seizing the right moment to change the dressings and providing satisfactory management of wounds are still urgently required. Herein, an antibacterial and anti-inflammatory nanofibrous mat is proposed by encapsulating antibiotic gentamicin sulfate (GS) and anti-inflammatory drug ibuprofen (IB) into nanofibers via a coaxial electrospinning technique and is further decorated with Prussian blue nanocrystals (PBNCs) to enhance anti-inflammatory activity and, more importantly, to monitor bacterial infections and guide dressing changes in a timely manner. Such a nanofibrous mat releases most of the therapeutic drugs within 120 min and reveals excellent antibacterial activity and anti-inflammatory ability. Specifically, it can destroy both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), as well as conspicuously reduce the production of reactive oxygen species (ROS) and the expression of pro-inflammatory cytokines in macrophages. In addition, the nanofibrous mat can be used for point-of-use diagnosis of living bacteria relying on the naked eye or color analysis, which exhibits the potential of monitoring wound infection and guiding dressing changes promptly. This finding demonstrates the theranostic applications of multifunctional nanofibrous mats in wound healing.


Assuntos
Nanofibras , Nanofibras/química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Células RAW 264.7 , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo
12.
ACS Omega ; 8(41): 38481-38493, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867710

RESUMO

The excessive use of antibiotics and consequent bacterial resistance have emerged as crucial public safety challenges for humanity. As a promising antibacterial treatment, using reactive oxygen species (ROS) can effectively address this problem and has the advantages of being highly efficient and having low toxicity. Herein, electrospinning and electrospraying were employed to fabricate magnesium oxide (MgO)-based nanoparticle composited polycaprolactone (PCL) nanofibrous dressings for the chemodynamic treatment of bacteria-infected wounds. By utilizing electrospraying, erythrocyte-like monoporous PCL microspheres incorporating silver (Ag)- and copper (Cu)-doped MgO nanoparticles were generated, and the unique microsphere-filament structure enabled efficient anchoring on nanofibers. The composite dressings produced high levels of ROS, as confirmed by the 2,7-dichloriflurescin fluorescent probe. The sustained generation of ROS resulted in efficient glutathione oxidation and a remarkable bacterial killing rate of approximately 99% against Staphylococcus aureus (S. aureus). These dressings were found to be effective at treating externally infected wounds. The unique properties of these composite nanofibrous dressings suggest great potential for their use in the medical treatment of bacteria-infected injuries.

13.
Int J Biol Macromol ; 242(Pt 3): 125144, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37268080

RESUMO

Diabetic ulcer is a severe complication of diabetes that can lead to amputation due to the overproduction of pro-inflammatory factors and reactive oxygen species (ROS). In this study, a composite nanofibrous dressing was developed by combining Prussian blue nanocrystals (PBNCs) and heparin sodium (Hep) through electrospinning, electrospraying, and chemical deposition. The nanofibrous dressing (PPBDH) was designed to take advantage of the excellent pro-inflammatory factor-adsorbing capability of Hep and the ROS-scavenging capabilities of PBNCs, resulting in synergistic treatment. It is worth noting that the nanozymes were firmly anchored to the fiber surfaces through slight polymer swelling caused by the solvent during electrospinning, thereby guaranteeing the preservation of the enzyme-like activity levels of PBNCs. The PPBDH dressing was found to be effective in reducing intracellular ROS levels, protecting cells from ROS-induced apoptosis, and capturing excessive pro-inflammatory factors, including chemoattractant protein-1 (MCP-1) and interleukin-1ß (IL-1ß). Furthermore, a chronic wound healing evaluation conducted in vivo demonstrated that the PPBDH dressing was able to effectively alleviate the inflammatory response and accelerate wound healing. This research presents an innovative approach to fabricate nanozyme hybrid nanofibrous dressings, which have great potential in accelerating the healing of chronic and refractory wounds with uncontrolled inflammation.


Assuntos
Diabetes Mellitus , Nanofibras , Humanos , Espécies Reativas de Oxigênio/farmacologia , Nanofibras/química , Heparina/farmacologia , Cicatrização , Bandagens , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
14.
Brain Res Bull ; 202: 110754, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683703

RESUMO

BACKGROUND: Major depressive disorder (MDD), a common mental disorder worldwide, frequently coexists with various physical illnesses, and recent studies have shown an increased prevalence of subclinical hypothyroidism (SHypo) among MDD patients. However, the neural mechanisms shared and unique to these disorders and the associated alterations in brain function remain largely unknown. This study investigated the potential brain function mechanisms underlying comorbid MDD and SHypo. METHOD: Thirty MDD patients (non-comorbid group), 30 MDD patients comorbid with SHypo (comorbid group), 26 patients with SHypo, and 30 healthy controls were recruited for resting-state functional magnetic resonance imaging (rs-fMRI). We used regional homogeneity (ReHo) to examine differences in internal cerebral activity across the four groups. RESULTS: Compared with the non-comorbid group, the comorbid group exhibited significantly higher ReHo values in the right orbital part of the middle frontal gyrus (ORBmid) and bilateral middle frontal gyrus; decreased ReHo values in the right middle temporal gyrus, right thalamus, and right superior temporal gyrus, and right insula. Within the comorbid group, serum TSH levels were negatively associated with the ReHo values of the right insula; the ReHo values of the right Insula were negatively associated with the retardation factor score; the ReHo values of the right ORBmid were positively correlated with the anxiety/somatization factor scores. CONCLUSIONS: These findings provide valuable clues for exploring the shared neural mechanisms between MDD and SHypo and have important implications for understanding the pathophysiological mechanisms of the comorbidity of the two disorders.


Assuntos
Transtorno Depressivo Maior , Hipotireoidismo , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/epidemiologia , Comorbidade , Hipotireoidismo/complicações , Hipotireoidismo/diagnóstico por imagem , Hipotireoidismo/epidemiologia , Lobo Frontal , Lobo Temporal
15.
Langmuir ; 28(1): 193-9, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22118499

RESUMO

Poly(sodium 4-styrenesulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) multilayers were treated with 1-5 M NaCl solutions, resulting in continuous changes in the physicochemical properties of the multilayers. Significant mass loss was observed when the salt concentration was higher than 2 M and reached as high as 72% in a 5 M NaCl solution. The disassembly occurred initially in the superficial layers and then developed in the bulk multilayers. For the multilayers with PDADMAC as the outmost layer, the molar ratio of PSS/PDADMAC was increased and the surface chemistry was changed from PDADMAC domination below 2 M NaCl to PSS domination above 3 M NaCl. Owing to the higher concentrations of uncompensated for polyelectrolytes at both lower and higher salt concentrations, the swelling ratio of the multilayers was decreased until reaching 3 M NaCl and then was increased significantly again. The salt-treated PSS/PDADMAC thin films are expected to show different behaviors in terms of the physical adsorption of various functional substances, cell adhesion and proliferation, and chemical reaction activity.

16.
Biointerphases ; 17(6): 061005, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376145

RESUMO

Generally, the anchoring of inorganic nanoparticles onto the surface of fibers faces the problem of poor stability, which limits the wide application of nanoparticle functionalized fibers. Herein, nanofibers with shell-core structures were constructed by coaxial electrospinning of two polymers with different melting points (Tm). Polyglycolic acid (PGA, Tm = 225 °C) was employed as the core layer, while polycaprolactone (PCL, Tm = 60 °C) was used as the shell layer. Silver nanoparticles (AgNPs) were electrosprayed on the nanofibers and the shell layer (PCL) was heated and melted to bond the AgNPs, thus realizing a stable AgNP-composited nanofiber for the construction of antibacterial functional surface. By regulating the shell-core flow ratio and the condition for heat treatment, the appropriate thickness of the shell layer was obtained with a flow ratio of 3:1 (PCL:PGA). The optimal composite structure was constructed when the thermal bonding was taken under 80 °C for 5 min. Furthermore, it was found that the composite nanofibers prepared by thermal bonding had better hydrophilicity, mechanical property, and AgNPs bonding stability, and their antibacterial rate against Staphylococcus aureus (S. aureus) reached over 97%. Overall, a facile and universal method for the preparation of nanoparticle-anchored nanofibers was established in this study. The robust nanoparticle-composited nanofibers are promising for applications in optoelectronic devices, electrode materials, and so on.


Assuntos
Nanopartículas Metálicas , Nanofibras , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Nanofibras/química , Prata/química , Staphylococcus aureus
17.
Front Endocrinol (Lausanne) ; 13: 892563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966068

RESUMO

Introduction: Type 2 diabetes mellitus (T2DM) has been found to be associated with abnormalities of the central and peripheral vascular nervous system, which were considered to be involved in the development of cognitive impairments and erectile dysfunction (ED). In addition, altered brain function and structure were identified in patients with ED, especially psychological ED (pED). However, the similarities and the differences of the central neural mechanisms underlying pED and T2DM with ED (DM-ED) remained unclear. Methods: Diffusion tensor imaging data were acquired from 30 T2DM, 32 ED, and 31 DM-ED patients and 47 healthy controls (HCs). Then, whole-brain structural networks were constructed, which were mapped by connectivity matrices (90 × 90) representing the white matter between 90 brain regions parcellated by the anatomical automatic labeling template. Finally, the method of network-based statistic (NBS) was applied to assess the group differences of the structural connectivity. Results: Our NBS analysis demonstrated three subnetworks with reduced structural connectivity in DM, pED, and DM-ED patients when compared to HCs, which were predominantly located in the prefrontal and subcortical areas. Compared with DM patients, DM-ED patients had an impaired subnetwork with increased structural connectivity, which were primarily located in the parietal regions. Compared with pED patients, an altered subnetwork with increased structural connectivity was identified in DM-ED patients, which were mainly located in the prefrontal and cingulate areas. Conclusion: These findings highlighted that the reduced structural connections in the prefrontal and subcortical areas were similar mechanisms to those associated with pED and DM-ED. However, different connectivity patterns were found between pED and DM-ED, and the increased connectivity in the frontal-parietal network might be due to the compensation mechanisms that were devoted to improving erectile function.


Assuntos
Diabetes Mellitus Tipo 2 , Disfunção Erétil , Substância Branca , Encéfalo , Diabetes Mellitus Tipo 2/complicações , Imagem de Tensor de Difusão/métodos , Disfunção Erétil/diagnóstico por imagem , Disfunção Erétil/etiologia , Humanos , Masculino
18.
Front Endocrinol (Lausanne) ; 13: 861131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733774

RESUMO

Background: Subjects with type 2 diabetes mellitus (T2DM) are susceptible to osteoporosis. This study was conducted to evaluate the association between glycemic variability evaluated by continuous glucose monitoring (CGM) and osteoporosis in type 2 diabetic patient. Methods: A total of 362 type 2 diabetic subjects who underwent bone mineral density (BMD) measurement and were monitored by a CGM system from Jan 2019 to May 2020 were enrolled in this cross-sectional study. Glycemic variability was calculated with the Easy GV software, including 24-hour mean blood glucose (24-h MBG), the standard deviation of 24-h MBG (SDBG), coefficient of variation (CV), mean amplitude of glycemic excursions (MAGE), and time in range between 3.9 and 10.0 mmol/L (TIR). Other potential influence factors for osteoporosis were also examined. Results: Based on the T-scores of BMD measurement, there were 190 patients with normal bone mass, 132 patients with osteopenia and 40 patients with osteoporosis. T2DM patients with osteoporosis showed a higher 24-h MBG, SDBG, CV, and MAGE, but a lower TIR (all p < 0.05). Multivariate logistic regression analysis revealed that age, female gender, body mass index (BMI), low-density lipoprotein cholesterol (LDL-C), serum uric acid (SUA) and MAGE independently contribute to osteoporosis, and corresponding odds ratio [95% confidence interval (CI)] was 1.129 (1.072-1.190), 4.215 (1.613-11.012), 0.801 (0.712-0.901), 2.743 (1.385-5.431), 0.993 (0.988-0.999), and 1.380 (1.026-1.857), respectively. Further receiver operating characteristic analysis with Youden index indicated that the area under the curve and its 95% CI were 0.673 and 0.604-0.742, with the optimal cut-off value of MAGE predicting osteoporosis being 4.31 mmol/L. Conclusion: In addition to conventional influence factors including age, female gender, BMI, LDL-C and SUA, increased glycemic variability assessed by MAGE is associated with osteoporosis in type 2 diabetic patients.


Assuntos
Diabetes Mellitus Tipo 2 , Osteoporose , Glicemia , Automonitorização da Glicemia , LDL-Colesterol , Estudos Transversais , Diabetes Mellitus Tipo 2/complicações , Feminino , Humanos , Osteoporose/diagnóstico , Osteoporose/epidemiologia , Osteoporose/etiologia , Ácido Úrico
19.
Membranes (Basel) ; 11(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799551

RESUMO

Since anionic dyes and surfactants abundantly exist in oily wastewater, both the separation of oil/water mixture and removal of low-molecular-weight pollutants are important to realize the advanced purification of water. By grafting poly(2-dimethylaminoethyl methacrylate) (pDMAEMA) onto polyethylene (PP) membrane via ultraviolet (UV)-initiated polymerization, the obtained PP-g-pDMAEMA membrane presented positively in water and negatively in an alkaline buffer (pH 9.0), respectively. Due to the switchable surface charge, the membrane had high emulsion separation efficiency and flux recovery ratio (approximately 100%). Besides, the dye (reactive black 5, RB-5) adsorption capacity reached 140 mg/m2 in water, and approximately 90% RB-5 could be released in pH 9.0. The anionic surfactant (sodium dodecyl benzene sulfonate, SDBS) was also reversely interpreted and released by the membrane via manipulating the ambient pH. The membrane constructed in this study is supposed to realize emulsion separation with smart cleaning capability, as well as the removal of dyes and surfactants, which could be utilized for multifunctional water purification.

20.
Artigo em Inglês | MEDLINE | ID: mdl-34130447

RESUMO

Superwetting membranes based on steric exclusion and affinity difference have drawn substantial interest for oil/water separation. However, the state-of-the-art membranes fail to literally sort out fouling and permeability decline and so limit their viability for long-term separation. Inspired by Dayu's philosophy of "draining rather than blocking water", herein, we achieve a long-lasting and efficient separation for viscous emulsions by designing poly(hydroxyethyl methylacrylate) (PHEMA)- and polydimethylsiloxane (PDMS)-compensated poly(vinylidene fluoride) membranes based on coalescence demulsification via chemical coordination phase separation. The symmetric and torturous microporous structure facilitated oil spatial confining and coalescence demulsification, while the synergistic compensation of PHEMA and PDMS coordinated the fouling resist and release properties, which was confirmed by multichannel confocal laser scanning microscopy. The developed membrane shows an unprecedented permeability half-life (τ) for viscous emulsions (e.g., decamethylcyclopentasiloxane, soybean oil paraffin, n-hexadecane, and isooctane) under cross-flow operation, far more beyond common superwetting membranes under applied bench-scale dead-end filtration. Our technique for designing "nonfouling" membranes opens up opportunities for advancing next-generation membranes for oil/water separation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa