Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell ; 177(2): 299-314.e16, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30929899

RESUMO

Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.


Assuntos
Envelhecimento/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/fisiologia , Animais , Autofagia/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Restrição Calórica , Células HEK293 , Humanos , Longevidade/fisiologia , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Permeabilidade , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
2.
Cell ; 167(7): 1705-1718.e13, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984722

RESUMO

Metformin has utility in cancer prevention and treatment, though the mechanisms for these effects remain elusive. Through genetic screening in C. elegans, we uncover two metformin response elements: the nuclear pore complex (NPC) and acyl-CoA dehydrogenase family member-10 (ACAD10). We demonstrate that biguanides inhibit growth by inhibiting mitochondrial respiratory capacity, which restrains transit of the RagA-RagC GTPase heterodimer through the NPC. Nuclear exclusion renders RagC incapable of gaining the GDP-bound state necessary to stimulate mTORC1. Biguanide-induced inactivation of mTORC1 subsequently inhibits growth through transcriptional induction of ACAD10. This ancient metformin response pathway is conserved from worms to humans. Both restricted nuclear pore transit and upregulation of ACAD10 are required for biguanides to reduce viability in melanoma and pancreatic cancer cells, and to extend C. elegans lifespan. This pathway provides a unified mechanism by which metformin kills cancer cells and extends lifespan, and illuminates potential cancer targets. PAPERCLIP.


Assuntos
Metformina/farmacologia , Acil-CoA Desidrogenase/genética , Envelhecimento , Animais , Tamanho Corporal , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Humanos , Longevidade , Alvo Mecanístico do Complexo 1 de Rapamicina , Mitocôndrias/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Complexos Multiproteicos/metabolismo , Neoplasias/tratamento farmacológico , Poro Nuclear/metabolismo , Fosforilação Oxidativa , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
3.
Nat Methods ; 20(10): 1605-1616, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666982

RESUMO

Recent progress in fluorescent protein development has generated a large diversity of near-infrared fluorescent proteins (NIR FPs), which are rapidly becoming popular probes for a variety of imaging applications. However, the diversity of NIR FPs poses a challenge for end-users in choosing the optimal one for a given application. Here we conducted a systematic and quantitative assessment of intracellular brightness, photostability, oligomeric state, chemical stability and cytotoxicity of 22 NIR FPs in cultured mammalian cells and primary mouse neurons and identified a set of top-performing FPs including emiRFP670, miRFP680, miRFP713 and miRFP720, which can cover a majority of imaging applications. The top-performing proteins were further validated for in vivo imaging of neurons in Caenorhabditis elegans, zebrafish, and mice as well as in mice liver. We also assessed the applicability of the selected NIR FPs for multicolor imaging of fusions, expansion microscopy and two-photon imaging.

4.
Mol Psychiatry ; 27(12): 5195-5205, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36065016

RESUMO

Antipsychotic-induced metabolic syndrome (APs-induced Mets) is the most common adverse drug reaction, which affects more than 60% of the psychiatric patients. Although the etiology of APs-induced Mets has been extensively investigated, there is a lack of integrated analysis of the genetic and epigenetic factors. In this study, we performed genome-wide, whole-exome sequencing (WES) and epigenome-wide association studies in schizophrenia (SCZ) patients with or without APs-induced Mets to find the underlying mechanisms, followed by in vitro and in vivo functional validations. By population-based omics analysis, we revealed that rare functional variants across in the leptin and peroxisome proliferator-activated receptors (PPARs) gene sets were imbalanced with rare functional variants across the APs-induced Mets and Non-Mets cohort. Besides, we discovered that APs-induced Mets are hypermethylated in ABCG1 (chr21:43642166-43642366, adjusted P < 0.05) than Non-Mets, and hypermethylation of this area was associated with higher TC (total cholesterol) and TG (triglycerides) levels in HepG2 cells. Candidate genes from omics studies were furtherly screened in C. elegans and 17 gene have been verified to associated with olanzapine (OLA) induced fat deposit. Among them, several genes were expressed differentially in Mets cohort and APs-induced in vitro/in vivo models compared to controls, demonstrating the validity of omics study. Overexpression one of the most significant gene, PTPN11, exhibited compromised glucose responses and insulin resistance. Pharmacologic inhibition of PTPN11 protected HepG2 cell from APs-induced insulin resistance. These findings provide important insights into our understanding of the mechanism of the APs-induced Mets.


Assuntos
Antipsicóticos , Leptina , Síndrome Metabólica , Receptores Ativados por Proliferador de Peroxissomo , Animais , Humanos , Antipsicóticos/efeitos adversos , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Caenorhabditis elegans , Resistência à Insulina/genética , Leptina/genética , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/complicações , Síndrome Metabólica/genética , Multiômica , Receptores Ativados por Proliferador de Peroxissomo/genética
5.
Molecules ; 28(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37836818

RESUMO

The removal of antibiotics from wastewater to prevent their environmental accumulation is significant for human health and ecosystems. Herein, iron (Fe)-atom-doped anatase TiO2 nanofibers (Fe-TNs) were manufactured for the photocatalytic Fenton-like decomposition of tylosin (TYL) under LED illumination. Compared with the pristine TiO2 nanofibers (TNs), the optimized Fe-TNs exhibited improved visible-light-driven photocatalytic Fenton-like activity with a TYL degradation efficiency of 98.5% within 4 h. The effective TYL degradation could be attributed to the expanded optical light absorption and accelerated separation and migration of photogenerated electrons and holes after the introduction of Fe. The photogenerated electrons were highly conducive to the generation of active SO4•- radicals as they facilitated Fe(III)/Fe(II) cycles, and to oxidizing TYL. Moreover, the holes could be involved in TYL degradation. Thus, a significant enhancement in TYL degradation could be achieved. This research verifies the use of iron-doped anatase nanofibers as an effective method to synthesize novel photocatalytic Fenton-like catalysts through surface engineering for wastewater remediation.

6.
Clin Immunol ; 218: 108516, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32574709

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is posing a huge threat to human health worldwide. We aim to investigate the immune status of CD8+ T and NK cells in COVID-19 patients. METHODS: The count and immune status of lymphocytes were detected by flow cytometry in 32 COVID-19 patients and 18 healthy individuals. RESULTS: As the disease progression in COVID-19 patients, CD8+ T and NK cells were significantly decreased in absolute number but highly activated. After patients' condition improved, the count and immune status of CD8+ T and NK cells restored to some extent. GrA+CD8+ T and perforin+ NK cells had good sensitivity and specificity for assisting diagnosis of COVID-19. CONCLUSIONS: As the disease progression, the declined lymphocytes in COVID-19 patients might lead to compensatory activation of CD8+ T and NK cells. GrA+CD8+ T and perforin+ NK cells might be used as meaningful indicators for assisting diagnosis of COVID-19.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/diagnóstico , Granzimas/genética , Células Matadoras Naturais/imunologia , Perforina/genética , Pneumonia Viral/diagnóstico , Linfócitos T Citotóxicos/imunologia , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus/imunologia , Biomarcadores/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , COVID-19 , Teste para COVID-19 , Estudos de Casos e Controles , China , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/sangue , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Progressão da Doença , Feminino , Expressão Gênica , Granzimas/sangue , Granzimas/imunologia , Humanos , Células Matadoras Naturais/patologia , Células Matadoras Naturais/virologia , Ativação Linfocitária , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Pandemias , Perforina/sangue , Perforina/imunologia , Pneumonia Viral/sangue , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Prognóstico , Curva ROC , SARS-CoV-2 , Índice de Gravidade de Doença , Linfócitos T Citotóxicos/patologia , Linfócitos T Citotóxicos/virologia
7.
Development ; 140(17): 3601-12, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23884442

RESUMO

The target of rapamycin complex 2 (TORC2) pathway is evolutionarily conserved and regulates cellular energetics, growth and metabolism. Loss of function of the essential TORC2 subunit Rictor (RICT-1) in Caenorhabditis elegans results in slow developmental rate, reduced brood size, small body size, increased fat mass and truncated lifespan. We performed a rict-1 suppressor RNAi screen of genes encoding proteins that possess the phosphorylation sequence of the AGC family kinase SGK, a key downstream effector of TORC2. Only RNAi to dpy-21 suppressed rict-1 slow developmental rate. DPY-21 functions canonically in the ten-protein dosage compensation complex (DCC) to downregulate the expression of X-linked genes only in hermaphroditic worms. However, we find that dpy-21 functions outside of its canonical role, as RNAi to dpy-21 suppresses TORC2 mutant developmental delay in rict-1 males and hermaphrodites. RNAi to dpy-21 normalized brood size and fat storage phenotypes in rict-1 mutants, but failed to restore normal body size and normal lifespan. Further dissection of the DCC via RNAi revealed that other complex members phenocopy the dpy-21 suppression of rict-1, as did RNAi to the DCC effectors set-1 and set-4, which methylate histone 4 on lysine 20 (H4K20). TORC2/rict-1 animals show dysregulation of H4K20 mono- and tri-methyl silencing epigenetic marks, evidence of altered DCC, SET-1 and SET-4 activity. DPY-21 protein physically interacts with the protein kinase SGK-1, suggesting that TORC2 directly regulates the DCC. Together, the data suggest non-canonical, negative regulation of growth and reproduction by DPY-21 via DCC, SET-1 and SET-4 downstream of TORC2 in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Transporte/metabolismo , Mecanismo Genético de Compensação de Dose/genética , Metabolismo Energético/fisiologia , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Western Blotting , Tamanho Corporal/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Tamanho da Ninhada/genética , Primers do DNA/genética , Metabolismo Energético/genética , Epigênese Genética/fisiologia , Feminino , Histona-Lisina N-Metiltransferase/metabolismo , Longevidade/genética , Masculino , Alvo Mecanístico do Complexo 2 de Rapamicina , Metiltransferases/metabolismo , Complexos Multiproteicos/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Proteína Companheira de mTOR Insensível à Rapamicina
8.
Mediators Inflamm ; 2016: 2174682, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313397

RESUMO

Background. Macrophage migration inhibitory factor (MIF) is an important immunoregulatory cytokine involved in inflammation, which may be one important reason resulting in matrix deposition in renal tissues after injury. However, the underlying mechanisms have not yet been elucidated. Methods and Results. We uncovered a crucial role of MIF in inflammation and collagen deposition in vivo and in vitro. In rats, ureteral obstruction induced tubular injury, matrix accumulation, and inflammatory cell infiltration. Additionally, enhanced MIF levels in the obstructed kidneys were closely related to the increasing numbers of CD68-positive macrophages. These obstruction-induced injuries can be relieved by recanalization, consequently resulting in downregulated expression of MIF and its receptor CD74. Similarly, ischemia reperfusion induced renal injury, and it was accompanied by elevated MIF levels and macrophages infiltration. In cultured tubular epithelial cells (TECs), aristolochic acid (AA) promoted matrix production and increased MIF expression, as well as the release of macrophage-related factors. Inhibition of MIF with an antagonist ISO-1 resulted in the abolishment of these genotypes in AA-treated TECs. Conclusion. MIF plays an important role in macrophage-related inflammation and matrix deposition in kidney tissues following injury. MIF as a specific inhibitor may have therapeutic potential for patients with inflammatory and fibrotic kidney diseases.


Assuntos
Inflamação/metabolismo , Oxirredutases Intramoleculares/metabolismo , Rim/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Ácidos Aristolóquicos/farmacologia , Western Blotting , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Imunofluorescência , Imuno-Histoquímica , Oxirredutases Intramoleculares/antagonistas & inibidores , Isoxazóis/farmacologia , Rim/imunologia , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Obstrução Ureteral/metabolismo
9.
J Immunol ; 190(3): 1319-30, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23269243

RESUMO

The granzyme/perforin pathway is a major mechanism for cytotoxic lymphocytes to eliminate virus-infected and tumor cells. The balance between activation and inhibition of the proteolytic cascade must be tightly controlled to avoid self damage. Granzyme H (GzmH) is constitutively expressed in NK cells and induces target cell death; however, how GzmH activity is regulated remains elusive. We reported earlier the crystal structures of inactive D102N-GzmH alone and in complex with its synthetic substrate and inhibitor, as well as defined the mechanisms of substrate recognition and enzymatic activation. In this study, we identified SERPINB1 as a potent intracellular inhibitor for GzmH. Upon cleavage of the reactive center loop at Phe(343), SERPINB1 forms an SDS-stable covalent complex with GzmH. SERPINB1 overexpression suppresses GzmH- or LAK cell-mediated cytotoxicity. We determined the crystal structures of active GzmH and SERPINB1 (LM-DD mutant) in the native conformation to 3.0- and 2.9-Å resolution, respectively. Molecular modeling reveals the possible conformational changes in GzmH for the suicide inhibition. Our findings provide new insights into the inhibitory mechanism of SERPINB1 against human GzmH.


Assuntos
Granzimas/fisiologia , Serpinas/fisiologia , Catálise , Linhagem Celular Tumoral , Cromatografia em Gel , Cristalografia por Raios X , Grânulos Citoplasmáticos/enzimologia , Citotoxicidade Imunológica , Vetores Genéticos , Granzimas/química , Granzimas/isolamento & purificação , Humanos , Células Jurkat , Células Matadoras Ativadas por Linfocina/imunologia , Modelos Moleculares , Proteínas de Neoplasias/química , Proteínas de Neoplasias/isolamento & purificação , Proteínas de Neoplasias/fisiologia , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão/fisiologia , Serpinas/química , Serpinas/isolamento & purificação , Relação Estrutura-Atividade
10.
Chemistry ; 20(40): 12924-32, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25168644

RESUMO

Side-chain vinyl poly(dimethylsiloxane) has been modified with mercaptopropionic acid, methyl 3-mercaptopropionate, and mercaptosuccinic acid. Coordinative bonding of Eu(III) to the functionalized polysiloxanes was then carried out and crosslinked silicone elastomers were prepared by thiol-ene curing reactions of these composites. All these europium complexes could be cast to form transparent, uniform, thin elastomers with good flexibility and thermal stability. The networks were characterized by FTIR, NMR, UV/Vis, and luminescence spectroscopy as well as by scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The europium elastomer luminophores exhibited intense red light at 617 nm under UV excitation at room temperature due to the (5)D0 →(7)F2 transition in Eu(III) ions. The newly synthesized luminescent materials offer many advantages, including the desired mechanical flexibility. They cannot be dissolved or fused, and so they have potential for use in optical and electronic applications.


Assuntos
Elastômeros/química , Európio/química , Substâncias Luminescentes/química , Siloxanas/química , Compostos de Sulfidrila/química , Química Click , Elastômeros/síntese química , Luminescência , Substâncias Luminescentes/síntese química , Medições Luminescentes , Espectroscopia de Ressonância Magnética , Espectroscopia Fotoeletrônica , Siloxanas/síntese química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Sulfidrila/síntese química
11.
J Immunol ; 188(2): 765-73, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22156497

RESUMO

Human granzyme H (GzmH) is constitutively expressed in human NK cells that have important roles in innate immune responses against tumors and viruses. GzmH is a chymotrypsin-like serine protease. Its substrate preference and its mechanism of substrate recognition are poorly understood. To provide structural insights into the substrate recognition mechanisms for GzmH, we solved the crystal structures of a D102N-GzmH mutant alone and in complex with a decapeptide substrate and an inhibitor to 2.2 Å, 2.4 Å, and 2.7 Å, respectively. The Thr(189), Gly(216), and Gly(226) specificity triad in the S1 pocket of GzmH defines its preference for bulky, aromatic residues (Tyr and Phe) at the P1 position. Notably, we discovered that an unusual RKR motif (Arg(39)-Lys(40)-Arg(41)), conserved only in GzmH, helps define the S3' and S4' binding regions, indicating the preference for acidic residues at the P3' and P4' sites. Disruption of the RKR motif or the acidic P3' and P4' residues in the substrate abolished the proteolytic activity of GzmH. We designed a tetrapeptide chloromethylketone inhibitor, Ac-PTSY-chloromethylketone, which can selectively and efficiently block the enzymatic and cytotoxic activity of GzmH, providing a useful tool for further studies on the function of GzmH.


Assuntos
Granzimas/química , Motivos de Aminoácidos/imunologia , Sequência de Aminoácidos , Animais , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/imunologia , Gatos , Linhagem Celular , Linhagem Celular Transformada , Cristalografia por Raios X , Citotoxicidade Imunológica/efeitos dos fármacos , Cães , Granzimas/antagonistas & inibidores , Granzimas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Células K562 , Dados de Sequência Molecular , Pan troglodytes , Ligação Proteica/imunologia , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/farmacologia , Especificidade por Substrato/imunologia
12.
Phytomedicine ; 132: 155813, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38905846

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a clinically common and serious renal dysfunction, characterized by inflammation and damage to tubular epithelial cells. Puerarin, an isoflavone derivative isolated from Pueraria lobata, has been proven to possess exceptional effectiveness in reducing inflammation. However, the effects and underlying mechanisms of puerarin on AKI remain uncertain. PURPOSE: This study investigated the possible therapeutic effects of puerarin on AKI and explored its underlying mechanism. STUDY DESIGN AND METHODS: The effects of puerarin on AKI and macrophage polarization were investigated in lipopolysaccharide (LPS)-induced or unilateral ureteral obstruction (UUO)-induced mouse models in vivo and LPS-treated macrophages (Raw264.7) in vitro. Additionally, the effects of puerarin on inflammation-related signaling pathways were analyzed. RESULTS: Administration of puerarin effectively alleviated kidney dysfunction and reduced inflammatory response in LPS-induced and UUO-induced AKI. In vitro, puerarin treatment inhibited the polarization of M1 macrophages and the release of inflammatory factors in Raw264.7 cells stimulated by LPS. Mechanistically, puerarin downregulated the activities of NF-κB p65 and JNK/FoxO1 signaling pathways. The application of SRT1460 to activate FoxO1 or anisomycin to activate JNK eliminated puerarin-mediated inhibition of JNK/FoxO1 signaling, leading to suppression of macrophage M1 polarization and reduction of inflammatory factors. Further studies showed that puerarin bound to Toll/interleukin-1 receptor (TIR) domain of MyD88 protein, hindering its binding with TLR4, ultimately resulting in downstream NF-κB p65 and JNK/FoxO1 signaling inactivation. CONCLUSIONS: Puerarin antagonizes NF-κB p65 and JNK/FoxO1 activation via TLR4/MyD88 pathway, thereby suppressing macrophage polarization towards M1 phenotype and alleviating renal inflammatory damage.

13.
J Biol Chem ; 287(35): 29579-88, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22773877

RESUMO

Mammalian target of rapamycin complex 2 (mTORC2) is a key activator of protein kinases that act downstream of insulin and growth factor signaling. Here we report that mice lacking the essential mTORC2 component rictor in liver (Lrictor(KO)) are unable to respond normally to insulin. In response to insulin, Lrictor(KO) mice failed to inhibit hepatic glucose output. Lrictor(KO) mice also fail to develop hepatic steatosis on a high fat diet and manifest half-normal serum cholesterol levels. This is accompanied by lower levels of expression of SREBP-1c and SREBP-2 and genes of fatty acid and cholesterol biosynthesis. Lrictor(KO) mice had defects in insulin-stimulated Akt Ser-473 and Thr-308 phosphorylation, leading to decreased phosphorylation of Akt substrates FoxO, GSK-3ß, PRAS40, AS160, and Tsc2. Lrictor(KO) mice also manifest defects in insulin-activated mTORC1 activity, evidenced by decreased S6 kinase and Lipin1 phosphorylation. Glucose intolerance and insulin resistance of Lrictor(KO) mice could be fully rescued by hepatic expression of activated Akt2 or dominant negative FoxO1. However, in the absence of mTORC2, forced Akt2 activation was unable to drive hepatic lipogenesis. Thus, we have identified an Akt-independent relay from mTORC2 to hepatic lipogenesis that separates the effects of insulin on glucose and lipid metabolism.


Assuntos
Lipogênese/fisiologia , Fígado/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Colesterol/biossíntese , Colesterol/genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica/fisiologia , Glucose/genética , Glucose/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células Hep G2 , Humanos , Insulina/genética , Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Camundongos Transgênicos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
14.
Commun Biol ; 6(1): 96, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693976

RESUMO

Years of use of the antidiabetic drug metformin has long been associated with the risk of vitamin B12 (B12) deficiency in type 2 diabetes (T2D) patients, although the underlying mechanisms are unclear. Accumulating evidence has shown that metformin may exert beneficial effects by altering the metabolism of the gut microbiota, but whether it induces human B12 deficiency via modulation of bacterial activity remains poorly understood. Here, we show that both metformin and the other biguanide drug phenformin markedly elevate the accumulation of B12 in E. coli. By functional and genomic analysis, we demonstrate that both biguanides can significantly increase the expression of B12 transporter genes, and depletions of vital ones, such as tonB, nearly completely abolish the drugs' effect on bacterial B12 accumulation. Via high-throughput screens in E. coli and C. elegans, we reveal that the TetR-type transcription factor RcdA is required for biguanide-mediated promotion of B12 accumulation and the expressions of B12 transporter genes in bacteria. Together, our study unveils that the antidiabetic drug metformin helps bacteria gather B12 from the environment by increasing the expressions of B12 transporter genes in an RcdA-dependent manner, which may theoretically reduce the B12 supply to T2D patients taking the drug over time.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Deficiência de Vitamina B 12 , Humanos , Animais , Hipoglicemiantes/farmacologia , Metformina/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Vitamina B 12 , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Deficiência de Vitamina B 12/induzido quimicamente
15.
Cell Rep ; 42(7): 112819, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37454291

RESUMO

The Notch signaling pathway controls cell growth, differentiation, and fate decisions. Dysregulation of Notch signaling has been linked to various human diseases. Notch receptor resides in multiple cellular compartments, and its translocation plays a central role in pathway activation. However, the spatial regulation of Notch receptor functions remains largely elusive. Using TurboID-based proximity labeling followed by affinity purification and mass spectrometry, we establish a spatially defined human Notch receptor interaction network. Notch receptors interact with different proteins in distinct subcellular compartments to perform specific cellular functions. This spatially defined interaction network also reveals that a large fraction of NOTCH is stored at the endoplasmic reticulum (ER)-Golgi intermediate compartment and recruits Ataxin-2-dependent recycling machinery for rapid recycling, Notch signaling activation, and leukemogenesis. Our work provides insights into dynamic Notch receptor complexes with exquisite spatial resolution, which will help in elucidating the detailed regulation of Notch receptors and highlight potential therapeutic targets for Notch-related pathogenesis.


Assuntos
Ataxina-2 , Receptores Notch , Humanos , Receptores Notch/metabolismo , Ataxina-2/metabolismo , Organelas/metabolismo , Transdução de Sinais , Diferenciação Celular , Receptor Notch1/metabolismo
16.
Cell Res ; 33(11): 821-834, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37500768

RESUMO

Maternal age at childbearing has continued to increase in recent decades. However, whether and how it influences offspring adult traits are largely unknown. Here, using adult body size as the primary readout, we reveal that maternal rather than paternal age has an evolutionarily conserved effect on offspring adult traits in humans, Drosophila, and Caenorhabditis elegans. Elucidating the mechanisms of such effects in humans and other long-lived animals remains challenging due to their long life course and difficulties in conducting in vivo studies. We thus employ the short-lived and genetically tractable nematode C. elegans to explore the mechanisms underlying the regulation of offspring adult trait by maternal aging. By microscopic analysis, we find that old worms transmit aged mitochondria with a donut-like shape to offspring. These mitochondria are rejuvenated in the offspring's early life, with their morphology fully restored before adulthood in an AMPK-dependent manner. Mechanistically, we demonstrate that early-life mitochondrial dysfunction activates AMPK, which in turn not only alleviates mitochondrial abnormalities but also activates TGFß signaling to increase offspring adult size. Together, our findings provide mechanistic insight into the ancient role of maternal aging in shaping the traits of adult offspring.


Assuntos
Proteínas Quinases Ativadas por AMP , Caenorhabditis elegans , Animais , Humanos , Adulto , Idoso , Envelhecimento/fisiologia , Tamanho Corporal , Mitocôndrias
17.
J Healthc Eng ; 2022: 7282192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35256900

RESUMO

The thrombosis process is a multifactorial evolution process that includes many genetic and environmental factors that interact with each other. It refers to the existence of blood deposits in the heart or blood vessel walls or abnormal blood clots in the circulatory blood flow during the survival period of humans or animals for some reason. This article aims to analyze the research of blood vessel stenosis caused by arterial thrombosis of the lower extremities under the diagnosis of cardiac ultrasound based on the mobile information system. This article first introduces the mobile information nursing system and its development process. The mobile nursing information system has experienced three stages of development and is an important application of the further development of science and technology in medical information technology. It also proposes a medical diagnosis method based on SRM on a mobile platform and gives a technical roadmap for heart sound analysis and processing. Then, based on the mobile information system, the formation of arterial thrombosis in the lower extremities was analyzed and discussed in the ultrasound diagnosis of the heart, and the vascular stenosis caused by the arterial thrombosis of the lower extremities was analyzed by imaging. Experimental results show that when there is >50% stenosis or complete occlusion, the CTA false positive is more prominent, especially when the calf artery type is complete stenosis. The main cause is that the circulation of the lower limbs is very poor, the blood entering the blood vessels of the lower limbs is scarce, the capillaries are weakly enhanced, and the quality cannot be improved.


Assuntos
Extremidade Inferior , Trombose , Animais , Constrição Patológica/diagnóstico por imagem , Humanos , Sistemas de Informação , Extremidade Inferior/diagnóstico por imagem , Trombose/diagnóstico por imagem , Veias
18.
Cell Rep ; 40(12): 111381, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130518

RESUMO

Vitamin B12 (B12) deficiency is a critical problem worldwide. Such deficiency in infants has long been known to increase the propensity to develop obesity and diabetes later in life through unclear mechanisms. Here, we establish a Caenorhabditis elegans model to study how early-life B12 impacts adult health. We find that early-life B12 deficiency causes increased lipogenesis and lipid peroxidation in adult worms, which in turn induces germline defects through ferroptosis. Mechanistically, we show the central role of the methionine cycle-SBP-1/SREBP1-lipogenesis axis in programming adult traits by early-life B12. Moreover, SBP-1/SREBP1 participates in a crucial feedback loop with NHR-114/HNF4 to maintain cellular B12 homeostasis. Inhibition of SBP-1/SREBP1-lipogenesis signaling and ferroptosis later in life can reverse disorders in adulthood when B12 cannot. Overall, this study provides mechanistic insights into the life-course effects of early-life B12 on the programming of adult health and identifies potential targets for future interventions for adiposity and infertility.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Peroxidação de Lipídeos , Lipogênese , Metionina , Fatores de Transcrição/metabolismo , Vitamina B 12
19.
J Biol Chem ; 285(24): 18326-35, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20406824

RESUMO

Granzyme M (GzmM) is a chymotrypsin-like serine protease that preferentially cuts its substrates after Met or Leu. GzmM is constitutively expressed in activated innate effector natural killer (NK) cells. GzmM-induced cell death is consistent with the kinetics of cytotoxicity of NK cells. These suggest that GzmM may play an important role in innate immunity. Our previous work demonstrated that GzmM induces caspase-dependent apoptosis. However, it is unknown about how GzmM causes caspase activation. Here, we showed that the inhibitor of the apoptosis gene family member Survivin is a physiological substrate for GzmM. GzmM hydrolyzes Survivin at Leu-138 to remove the last four C-terminal residues. The truncated form (sur-TF) is more rapidly hydrolyzed through proteasome-mediated degradation. In addition, Survivin is in complex with X-linked inhibitor of apoptosis protein (XIAP) to inhibit caspase activation as an endogenous inhibitor. Survivin cleavage by GzmM abolishes the stability of the Survivin-XIAP complex and enhances XIAP hydrolysis, which amplifies caspase-9 and 3 activation of target tumor cells. The noncleavable L138A Survivin overexpression can significantly inhibit GzmM-mediated XIAP degradation, caspase activation, and GzmM- and NK cell-induced cytotoxicity. Moreover, Survivin silencing promotes XIAP degradation and enhances GzmM-induced caspase activation as well as GzmM- and NK cell-induced cytolysis of target tumor cells.


Assuntos
Caspases/metabolismo , Granzimas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Neoplasias/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Caspase 9/metabolismo , Ativação Enzimática , Inativação Gênica , Células HeLa , Humanos , Hidrólise , Proteínas Inibidoras de Apoptose , Células Jurkat , Leucina/química , Interferência de RNA , Survivina , Técnicas do Sistema de Duplo-Híbrido
20.
J Immunol ; 183(1): 421-9, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19542453

RESUMO

Granzyme M (GzmM), a unique serine protease constitutively expressed in NK cells, is important for granule-mediated cytolysis and can induce rapid caspase-dependent apoptosis of tumor cells. However, few substrates of GzmM have been reported to date, and the mechanism by which this enzyme recognizes and hydrolyzes substrates is unknown. To provide structural insights into the proteolytic specificity of human GzmM (hGzmM), crystal structures of wild-type hGzmM, the inactive D86N-GzmM mutant with bound peptide substrate, and the complexes with a catalytic product and with a tetrapeptide chloromethylketone inhibitor were solved to 1.96 A, 2.30 A, 2.17 A and 2.70 A, respectively. Structure-based mutagenesis revealed that the N terminus and catalytic triad of hGzmM are most essential for proteolytic function. In particular, D86N-GzmM was found to be an ideal inactive enzyme for functional studies. Structural comparisons indicated a large conformational change of the L3 loop upon substrate binding, and suggest this loop mediates the substrate specificity of hGzmM. Based on the complex structure of GzmM with its catalytic product, a tetrapeptide chloromethylketone inhibitor was designed and found to specifically block the catalytic activity of hGzmM.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Granzimas/química , Granzimas/metabolismo , Substituição de Aminoácidos/genética , Substituição de Aminoácidos/imunologia , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Domínio Catalítico/genética , Domínio Catalítico/imunologia , Cristalografia por Raios X , Estabilidade Enzimática/genética , Estabilidade Enzimática/imunologia , Granzimas/antagonistas & inibidores , Granzimas/genética , Humanos , Hidrólise , Células Jurkat , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato/genética , Especificidade por Substrato/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa