Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Small ; : e2401384, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940385

RESUMO

Understanding the reconstruction mechanism to rationally design cost-effective electrocatalysts for oxygen evolution reaction (OER) is still challenging. Herein, a defect-rich NiMoO4 precatalyst is used to explore its OER activity and reconstruction mechanism. In situ generated oxygen vacancies, distorted lattices, and edge dislocations expedite the deep reconstruction of NiMoO4 to form polycrystalline Ni (oxy)hydroxides for alkaline oxygen evolution. It only needs ≈230 and ≈285 mV to reach 10 and 100 mA cm-2, respectively. The reconstruction boosted by the redox of Ni is confirmed experimentally by sectionalized cyclic voltammetry activations at different specified potential ranges combined with ex situ characterization techniques. Subsequently, the reconstruction route is presented based on the acid-base electronic theory. Accordingly, the dominant contribution of the adsorbate evolution mechanism to reconstruction during oxygen evolution is revealed. This work develops a novel route to synthesize defect-rich materials and provides new tactics to investigate the reconstruction.

2.
Small ; : e2402397, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634268

RESUMO

Optimizing the local electronic structure of electrocatalysts can effectively lower the energy barrier of electrochemical reactions, thus enhancing the electrocatalytic activity. However, the intrinsic contribution of the electronic effect is still experimentally unclear. In this work, the electron injection-incomplete discharge approach to achieve the electron accumulation (EA) degree on the nickel-iron layered double hydroxide (NiFe LDH) is proposed, to reveal the intrinsic contribution of EA toward oxygen evolution reaction (OER). Such NiFe LDH with EA effect results in only 262 mV overpotential to reach 50 mA cm-2, which is 51 mV-lower compared with pristine NiFe LDH (313 mV), and reduced Tafel slope of 54.8 mV dec-1 than NiFe LDH (107.5 mV dec-1). Spectroscopy characterizations combined with theoretical calculations confirm that the EA near concomitant Vo can induce a narrower energy gap and lower thermodynamic barrier to enhance OER performance. This study clarifies the mechanism of the EA effect on OER activity, providing a direct electronic structure modulation guideline for effective electrocatalyst design.

3.
Small ; 19(14): e2206933, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36631285

RESUMO

The large-scale synthesis of high-quality boron nitride nanotubes (BNNTs) has attracted considerable interests due to their applications in nanocomposites, thermal management, and so on. Despite decades of development, efficient preparation of high-quality BNNTs, which relies on the effective design of precursors and catalysts and deep insights into the catalytic mechanisms, is still urgently needed. Here, a self-catalytic process is designed to grow high-quality BNNTs using ternary W-B-Li compounds. W-B-Li compounds provide boron source and catalyst for BNNTs growth. High-quality BNNTs are successfully obtained via this approach. Density functional theory-based molecular dynamics (DFT-MD) simulations demonstrate that the Li intercalation into the lattice of W2 B5 promotes the formation of W-B-Li liquid and facilitates the compound evaporation for efficient BNNTs growth. This work demonstrates a high-efficient self-catalytic growth of high-quality BNNTs via ternary W-B-Li compounds, providing a new understanding of high-quality BNNTs growth.

4.
Ecotoxicol Environ Saf ; 251: 114544, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36641865

RESUMO

Ammonia is recognized as an environmental stressor for fish. As resveratrol (RES) has anti-inflammatory and antioxidant properties, we hypothesized that RES could attenuate the response to ammonia exposure in gibel carp. Therefore, gibel carp were fed a diet containing RES for eight weeks, followed by acute ammonia stimulation. Stress induced by acute ammonia exposure could be ameliorated by RES, manifested by down-regulated plasma glucose, and up-regulated C3 and IgM levels. Furthermore, decreased AST and LDH; enhanced T-AOC, SOD, and GPx in the liver; and reduced damage to gill and liver tissues indicated that RES attenuated oxidative and tissue damage induced by ammonia exposure. Moreover, RES activated the Nrf2/HO-1 pathway and up-regulated the expression of several antioxidant genes. RES enhanced anti-inflammatory activity as reflected by activation of the NF-κB pathway, down-regulated the expression of pro-inflammatory cytokines (nfκb, tnf-α, and il-1ß), and up-regulated the expression of anti-inflammatory cytokines (il-4 and il-10). In terms of mitochondrial function, RES up-regulated protein levels of p-AMPK, SIRT1, and PGC-1α; inhibited mitochondrial fission; promoted mitochondrial fusion and biogenesis-related gene expression. Overall, the results suggest that RES mediated the Nrf2/HO-1, NF-κB, and AMPK/SIRT1/PGC-1α pathways to attenuate oxidative stress, inflammation, and mitochondrial dysfunction induced by ammonia in gibel carp.


Assuntos
Carpas , Cyprinidae , Animais , Resveratrol/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Sirtuína 1/metabolismo , Amônia/toxicidade , Amônia/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/genética , Estresse Oxidativo , Cyprinidae/metabolismo , Citocinas/genética , Citocinas/metabolismo , Mitocôndrias/metabolismo , Carpas/metabolismo
5.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047414

RESUMO

This study investigated the potential role of curcumin (CUR) in preventing oxidative stress and ferroptosis induced by ammonia exposure in gibel carp. Experimental fish (initial weight: 11.22 ± 0.10 g, n = 150) were fed diets supplemented with or without 0.5% CUR for 56 days, followed by a 24 h ammonia (32.5 mg/L) exposure. Liver damages (aspartate aminotransferase (AST), alanine aminotransferase (ALT), adenosine deaminase (ADA), and alkaline phosphatase (ALP)) and oxidative stress enzyme activities (reactive oxygen species (ROS), malondialdehyde (MDA); and the content of antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GPx)) were induced by ammonia stress. The antioxidant capacity was decreased, as indicated by inhibited gene expression of nuclear factor erythroid 2-related factor 2 (nrf2), heme oxygenase-1 (ho-1), catalase (cat), and sod. Ferroptosis was induced by ammonia stress, as suggested by upregulated mRNA levels of nuclear receptor coactivator 4 (ncoa4), transferrin receptor 1 (tfr1), and iron-responsive element-binding protein 2 (ireb2), and downregulated expression of glutathione peroxidase 4 (gpx4), ferroportin (fpn), and ferritin heavy chain 1 (fth1). In addition, both mRNA and protein levels of ferroptosis markers acyl-CoA synthetase long-chain family member 4 (ACSL4) and prostaglandin-endoperoxide synthase 2 (PTGS2) were upregulated, while cystine/glutamate antiporter (SLC7A11) was downregulated. However, liver injury and ferroptosis in fish induced by ammonia could be attenuated by CUR. Collectively, these findings demonstrate that CUR ameliorates oxidative stress and attenuates ammonia stress-induced ferroptosis. This study provides a new perspective on potential preventive strategies against ammonia stress in gibel carp by dietary CUR.


Assuntos
Carpas , Doença Hepática Crônica Induzida por Substâncias e Drogas , Curcumina , Cyprinidae , Ferroptose , Animais , Antioxidantes/farmacologia , Curcumina/farmacologia , Amônia/farmacologia , Estresse Oxidativo , Cyprinidae/genética , Superóxido Dismutase/metabolismo , Carpas/metabolismo , RNA Mensageiro/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo
6.
BMC Plant Biol ; 22(1): 319, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787241

RESUMO

BACKGROUND: Tea plant breeding or cultivation mainly involves propagation via cuttings, which not only ensures the inheritance of the excellent characteristics of the mother plant but also facilitates mechanized management. The formation of adventitious root (AR) determines the success of cutting-based propagation, and auxin is an essential factor involved in this process. To understand the molecular mechanism underlying AR formation in nodal tea cuttings, transcriptome and endogenous hormone analysis was performed on the stem bases of red (mature)- and green (immature)-stem cuttings of 'Echa 1 hao' tea plant as affected by a pulse treatment with naphthalene acetic acid (NAA). RESULTS: In this study, NAA significantly promoted AR formation in both red- and green-stem cuttings but slightly reduced callus formation. External application of NAA reduced the levels of endogenous indole-3-acetic acid (IAA) and cytokinin (TZR, trans-zeatin riboside). The number of DEGs (NAA vs. CK) identified in the green-stem cuttings was significantly higher than that in the red-stem cuttings, which corresponded to a higher rooting rate of green-stem cuttings under the NAA treatment. A total of 82 common DEGs were identified as being hormone-related and involved in the auxin, cytokinin, abscisic acid, ethylene, salicylic acid, brassinosteroid, and jasmonic acid pathways. The negative regulation of NAA-induced IAA and GH3 genes may explain the decrease of endogenous IAA. NAA reduced endogenous cytokinin levels and further downregulated the expression of cytokinin signalling-related genes. By the use of weighted gene co-expression network analysis (WGCNA), several hub genes, including three [cellulose synthase (CSLD2), SHAVEN3-like 1 (SVL1), SMALL AUXIN UP RNA (SAUR21)] that are highly related to root development in other crops, were identified that might play important roles in AR formation in tea cuttings. CONCLUSIONS: NAA promotes the formation of AR of tea cuttings in coordination with endogenous hormones. The most important endogenous AR inductor, IAA, was reduced in response to NAA. DEGs potentially involved in NAA-mediated AR formation of tea plant stem cuttings were identified via comparative transcriptome analysis. Several hub genes, such as CSLD2, SVL1 and SAUR21, were identified that might play important roles in AR formation in tea cuttings.


Assuntos
Camellia sinensis , Acetatos/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Citocininas/metabolismo , Hormônios/metabolismo , Ácidos Indolacéticos/metabolismo , Naftalenos/metabolismo , Melhoramento Vegetal , Raízes de Plantas/metabolismo , Chá , Transcriptoma
7.
Opt Express ; 30(15): 26609-26619, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236848

RESUMO

The applications of fiber-optic acoustic sensors are expanded to the high-temperature field, but it still faces challenges to realize the wide-band and high-sensitivity acoustic signal detection in high-temperature environments. Here, we propose a miniature membrane-free fiber-optic acoustic sensor based on a rigid Fabry-Pérot (F-P) cavity and construct an acoustic signal detection system. The system can achieve high-sensitivity acoustic detection while maintaining a wide frequency band in temperatures ranging from 20 °C to 200 °C. The prepared F-P cavity based on optical contact technology is the sensitive unit of the sensor, and has a high-quality factor of 8.8×105. Specifically, with the increasing of temperature, the sensitivity gradually increases, and the frequency response range does not change. A maximum sensitivity of 491.2 mV/Pa and a high signal-to-noise ratio of 60.9 dB are achieved at 200 °C. The sensor has an excellent acoustic signal response in the frequency range of 10 Hz-50 kHz with a flatness of ±2 dB. This study is important for the application of the fiber-optic acoustic sensor in high-temperature environments.

8.
Appl Opt ; 61(10): 2818-2824, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35471357

RESUMO

A compact fiber-optic Fabry-Perot (F-P) cavity for a sensor is designed based on a sandwich structure, adopting direct bonding of quartz glass. The reflective F-P cavity is manufactured by a fiber optic with a quartz glass ferrule and the sandwich structure with an air cavity, which is achieved by direct bonding of quartz glass. This fabrication process includes plasma surface activation, hydrophilic pre-bonding, high-temperature annealing, and dicing. The cross section of the bonding interface tested by a scanning electron microscope indicates that the sandwich structure is well bonded, and the air cavity is not deformed. Experiments show that the quality factor of the F-P cavity is 2711. Tensile strength testing shows that the bond strength exceeds 35 MPa. The advantage of direct bonding of quartz glass is that high consistency and mass production of the cavity can be realized. Moreover, the cavity is free of problems caused by the mismatch of thermal expansion coefficients between different materials. Therefore, the F-P cavity can be made into a sensor, which is promising in detecting air pressure, acoustic and high temperature.

9.
Sensors (Basel) ; 22(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35270924

RESUMO

We used surface-enhanced Raman spectroscopy (SERS) for the rapid and sensitive detection and quantification of caffeine in solution. Such a technique incorporated into a portable device is finding wide applications in trace chemical analysis in various fields, including law enforcement, medicine, environmental monitoring, and food quality control. To realize such applications, we are currently developing portable and handheld trace chemical analyzers based on SERS, which are integrated with a sensor embedded with activated gold nanoparticles in a porous glass matrix. In this study, we used this gold SERS-active substrate to measure aqueous solutions of the drug caffeine as a test chemical to benchmark sensor performance by defining sensitivity (lowest measured concentration (LMC) and estimated limit of detection (LOD)), determining concentration dependence and quantification capabilities by constructing calibration curves; by evaluating the effects of pH values of 3, 7, and 11; and by examining the reproducibility of the SERS measurements. The results demonstrate that the SERS sensor is sensitive, with caffeine detected at an LMC of 50 parts per billion (ppb) with an LOD of 0.63 ppb. The results further show that the sensor is very stable and can be used to make reproducible measurements, even under extremely acidic to basic pH conditions. Vibrational assignments of all observed SERS peaks are made and reported for the first time for caffeine on a gold substrate.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
10.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743106

RESUMO

NRT1/PTR FAMILY (NPF) genes are characterized as nitrate and peptide transporters that played important roles in various substrates transport in plants. However, little is known about the NPF gene in tea plants. Here, a total of 109 CsNPF members were identified from the tea plant genome, and divided into 8 groups according to their sequence characteristics and phylogenetic relationship. Gene structure and conserved motif analysis supported the evolutionary conservation of CsNPFs. Many hormone and stress response cis-acting elements and transcription factor binding sites were found in CsNPF promoters. Syntenic analysis suggested that multiple duplication types contributed to the expansion of NPF gene family in tea plants. Selection pressure analysis showed that CsNPF genes experienced strong purifying selective during the evolution process. The distribution of NPF family genes revealed that 8 NPF subfamilies were formed before the divergence of eudicots and monocots. Transcriptome analysis showed that CsNPFs were expressed differently in different tissues of the tea plant. The expression of 20 CsNPF genes at different nitrate concentrations was analyzed, and most of those genes responded to nitrate resupply. Subcellular localization showed that both CsNPF2.3 and CsNPF6.1 were localized in the plasma membrane, which was consistent with the characteristics of transmembrane proteins involved in NO3- transport. This study provides a theoretical basis for further investigating the evolution and function of NPF genes.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras , Família Multigênica , Transportadores de Nitrato , Nitratos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Chá
11.
J Sci Food Agric ; 102(4): 1405-1414, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34374435

RESUMO

BACKGROUND: Tea plants have high nitrogen (N) consumptions, whereas molecular and physiological responses of tea plants to N recovery are still unclear. RESULTS: By using non-invasive micro-test technology (NMT), 15 N tracer technique, ultra-performance liquid chromatography (UPLC), and transcriptome sequencing technology, we investigated the N recovery-induced changes in N absorptions, N tissue distributions, contents of free amino acids (FAAs), and global transcription of the low-N tolerant and intolerant tea genotypes [i.e. Wuniuzao (W) and Longjing43 (L)]. The results showed that the phenotype of Wuniuzao was better than that of Longjing43 under low-N condition. The N absorption and utilization of Wuniuzao were superior to Longjing43 under N recovery. The γ-aminobutyric acid (GABA) ratio (N recovery/N deficiency) in the root of Wuniuzao was significantly higher than that of Longjing43, while the glutamic acid ratio in the root of Wuniuzao was significantly lower than that of Longjing43. This findings suggested that Wuniuzao tended to enhance the GABA synthesis, while Longjing43 tended to inhibit the GABA synthesis under N recovery. The key genes in response to N recovery in Wuniuzao included N transport (AMT and NRT), N transformation (NR, NirA, and GAD), and amino acid transport (GAT) genes. In addition, some ribosome and flavonoid biosynthesis genes might help to maintain proteome homeostasis. CONCLUSION: The N absorption and transport, and the conversion abilities of key amino acids (Glu and GABA) might improve the adaptability of tea plants to N recovery, which provided a basis for the breeding of N efficient tea varieties. © 2021 Society of Chemical Industry.


Assuntos
Camellia sinensis , Nitrogênio , Aminoácidos/metabolismo , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Glutâmico/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
12.
Neuroimage ; 238: 118224, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34087364

RESUMO

The dynamical organization of brain networks is essential to support human cognition and emotion for rapid adaption to ever-changing environment. As the core nodes of emotion-related brain circuitry, the basolateral amygdala (BLA) and centromedial amygdala (CMA) as two major amygdalar nuclei, are recognized to play distinct roles in affective functions and internal states, via their unique connections with cortical and subcortical structures in rodents. However, little is known how the dynamical organization of emotion-related brain circuitry reflects internal autonomic responses in humans. Using resting-state functional magnetic resonance imaging (fMRI) with K-means clustering approach in a total of 79 young healthy individuals (cohort 1: 42; cohort 2: 37), we identified two distinct states of BLA- and CMA-based intrinsic connectivity patterns, with one state (integration) showing generally stronger BLA- and CMA-based intrinsic connectivity with multiple brain networks, while the other (segregation) exhibiting weaker yet dissociable connectivity patterns. In an independent cohort 2 of fMRI data with concurrent recording of skin conductance, we replicated two similar dynamic states and further found higher skin conductance level in the integration than segregation state. Moreover, machine learning-based Elastic-net regression analyses revealed that time-varying BLA and CMA intrinsic connectivity with distinct network configurations yield higher predictive values for spontaneous fluctuations of skin conductance level in the integration than segregation state. Our findings highlight dynamic functional organization of emotion-related amygdala nuclei circuits and networks and its links to spontaneous autonomic arousal in humans.


Assuntos
Nível de Alerta/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Mapeamento Encefálico/métodos , Núcleo Central da Amígdala/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Complexo Nuclear Basolateral da Amígdala/diagnóstico por imagem , Núcleo Central da Amígdala/diagnóstico por imagem , Conectoma/métodos , Emoções/fisiologia , Feminino , Resposta Galvânica da Pele , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Masculino , Descanso/fisiologia , Adulto Jovem
13.
BMC Biotechnol ; 21(1): 17, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648478

RESUMO

BACKGROUND: Alanine decarboxylase (AlaDC), specifically present in tea plants, is crucial for theanine biosynthesis. Serine decarboxylase (SDC), found in many plants, is a protein most closely related to AlaDC. To investigate whether the new gene AlaDC originate from gene SDC and to determine the biochemical properties of the two proteins from Camellia sinensis, the sequences of CsAlaDC and CsSDC were analyzed and the two proteins were over-expressed, purified, and characterized. RESULTS: The results showed that exon-intron structures of AlaDC and SDC were quite similar and the protein sequences, encoded by the two genes, shared a high similarity of 85.1%, revealing that new gene AlaDC originated from SDC by gene duplication. CsAlaDC and CsSDC catalyzed the decarboxylation of alanine and serine, respectively. CsAlaDC and CsSDC exhibited the optimal activities at 45 °C (pH 8.0) and 40 °C (pH 7.0), respectively. CsAlaDC was stable under 30 °C (pH 7.0) and CsSDC was stable under 40 °C (pH 6.0-8.0). The activities of the two enzymes were greatly enhanced by the presence of pyridoxal-5'-phosphate. The specific activity of CsSDC (30,488 IU/mg) was 8.8-fold higher than that of CsAlaDC (3467 IU/mg). CONCLUSIONS: Comparing to CsAlaDC, its ancestral enzyme CsSDC exhibited a higher specific activity and a better thermal and pH stability, indicating that CsSDC acquired the optimized function after a longer evolutionary period. The biochemical properties of CsAlaDC might offer reference for theanine industrial production.


Assuntos
Alanina Desidrogenase/genética , Alanina Desidrogenase/metabolismo , Camellia sinensis/enzimologia , Camellia sinensis/genética , Serina/metabolismo , Alanina/metabolismo , Alanina Desidrogenase/química , Carboxiliases/genética , Escherichia coli/genética , Glutamatos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Chá
14.
Opt Express ; 29(11): 16447-16454, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154207

RESUMO

A micro-fiber-optic acoustic sensor based on the high-quality-factor (high-Q) resonance effect that uses a Fabry-Pérot etalon (FPE) is presented in this study. The device has been demonstrated experimentally to be a high-sensitivity acoustic sensor with a large dynamic range over a wide frequency band. Optical contact technology was used to improve the robustness of the FPE, which consists of two parallel lenses with high reflectivity exceeding 99%. An acoustic signal detection system based on phase modulation spectrum technology was also constructed. A stable and high-Q value of 106 was measured for the FPE. As a result, high sensitivity of 177.6 mV/Pa was achieved. Because of the change in the refractive index of the air when it is modulated by the acoustic waves, a frequency response of 20 Hz-70 kHz with flatness of ±2 dB was obtained and a large dynamic range of 115.3 dB was measured simultaneously. The excellent performance of the device will be beneficial for optical acoustic sensing.

15.
Br J Nutr ; 125(11): 1215-1229, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-32921323

RESUMO

Previous nutritional studies have shown that insulin regulation is different between DT and A strains of gibel carp. As leptin plays a pivotal role in the effects of insulin, we hypothesised that leptin regulation of glucose and lipid metabolism would differ between the two strains. To test our hypothesis, recombinant human leptin was injected into two strains. The results showed that leptin activated the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (AKT), AMP-activated protein kinase-acetyl coenzyme A carboxylase and Janus kinase 2 (JAK2)-signal transducer and activator of transcription (STAT) signalling pathways in both strains. Hypoglycaemia induced by leptin might be due to higher glucose uptake by the liver and muscles together with enhanced glycolytic potential and reduced gluconeogenic potential. Decreased lipogenesis and up-regulated fatty acid oxidation were induced by leptin. In terms of genotype, the PI3K-AKT signalling pathway was more strongly activated by leptin in the muscle tissue of the A strain, as reflected by the heightened phosphorylation of AKT. Furthermore, glycogen content, glycolytic enzyme activity and gluconeogenic capability were higher in the A strain than the DT strain. Strain A had higher levels of fatty acid synthesis and lipolytic capacity in the liver than the DT strain, but the opposite was true in white muscle. Regarding leptin-genotype interactions, the DT strain displayed stronger regulation of glucose metabolism in the liver by leptin as compared with the A strain. Moreover, a more active JAK2-STAT signalling pathway accompanied by enhanced inhibition of fatty acid synthesis by leptin was observed in the DT strain. Overall, the regulation of glucose and lipid metabolism by leptin differed between the two strains, as expected.


Assuntos
Carpas/metabolismo , Glucose/metabolismo , Leptina/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Ácidos Graxos/metabolismo , Glicogênio/metabolismo , Insulina/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Músculos/metabolismo , Oxirredução/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Plant J ; 97(5): 825-840, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30447121

RESUMO

Cultivars of purple tea (Camellia sinensis) that accumulate anthocyanins in place of catechins are currently attracting global interest in their use as functional health beverages. RNA-seq of normal (LJ43) and purple Zijuan (ZJ) cultivars identified the transcription factor CsMYB75 and phi (F) class glutathione transferase CsGSTF1 as being associated with anthocyanin hyperaccumulation. Both genes mapped as a quantitative trait locus (QTL) to the purple bud leaf color (BLC) trait in F1 populations, with CsMYB75 promoting the expression of CsGSTF1 in transgenic tobacco (Nicotiana tabacum). Although CsMYB75 elevates the biosynthesis of both catechins and anthocyanins, only anthocyanins accumulate in purple tea, indicating selective downstream regulation. As glutathione transferases in other plants are known to act as transporters (ligandins) of flavonoids, directing them for vacuolar deposition, the role of CsGSTF1 in selective anthocyanin accumulation was investigated. In tea, anthocyanins accumulate in multiple vesicles, with the expression of CsGSTF1 correlated with BLC, but not with catechin content, in diverse germplasm. Complementation of the Arabidopsis tt19-8 mutant, which is unable to express the orthologous ligandin AtGSTF12, restored anthocyanin accumulation, but did not rescue the transparent testa phenotype, confirming that CsGSTF1 did not function in catechin accumulation. Consistent with a ligandin function, transient expression of CsGSTF1 in Nicotiana occurred in the nucleus, cytoplasm and membrane. Furthermore, RNA-Seq of the complemented mutants exposed to 2% sucrose as a stress treatment showed unexpected roles for anthocyanin accumulation in affecting the expression of genes involved in redox responses, phosphate homeostasis and the biogenesis of photosynthetic components, as compared with non-complemented plants.


Assuntos
Antocianinas/metabolismo , Camellia sinensis/genética , Flavonoides/biossíntese , Glutationa Transferase/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Camellia sinensis/enzimologia , Camellia sinensis/fisiologia , Genômica , Glutationa Transferase/genética , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , RNA-Seq , Estresse Fisiológico , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/genética
17.
Fish Shellfish Immunol ; 97: 351-358, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31874297

RESUMO

This study was conducted to investigate the effect of dietary Scenedesmus ovalternus on the growth and disease resistance of gibel carp (Carassius gibelio) during overwintering. Gibel carp (initial body weight: 90.39 ± 0.33 g) were fed with diets containing 0% or 4% Scenedesmus ovalternus (DS0 and DS4) for 4 weeks during the early overwintering period, and then all fish were left unfed during the late overwintering period. A bacterial challenge test using Aeromonas hydrophila was subsequently conducted. The 4% Scenedesmus ovalternus diet had no effect on the growth of gibel carp (P > 0.05), but did improve the survival rate after the challenge (P ≤ 0.05). In the DS0 group, the bacterial challenge decreased the contents of complement 3 (C3), immunoglobulin M (IgM), interleukin 2 (IL2) and tumor necrosis factor α (TNFα) in fish (P < 0.05); in the DS4 group, the challenge increased total antioxidant capacity (T-AOC) and myeloperoxidase (MPO) activity but decreased IL2 and TNFα contents (P < 0.05). The activities of MPO and contents of C3, IgM and TNFα were higher in the DS4 group than that fed the DS0 diet after bacterial challenge (P < 0.05). Compared to pre challenge, the expression levels of toll like receptor 2 (TLR2), toll like receptor 3 (TLR3), toll like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), Toll/IL-1 receptor domain-containing adaptor protein (TIRAP), TIR-domain-containing adapter-inducing interferon ß (TRIF), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α (IκBα), transforming growth factor ß (TGFß), interleukin 1ß (IL1ß), tumor necrosis factor α1 (TNFα1) and interleukin 10 (IL10) in the head kidney of gibel carp were induced after challenge (P < 0.05). Gibel carp fed the DS4 diet showed lower expression of TGFß in head kidney before the challenge and lower expression of TLR2, TLR3, TLR4, TIRAP, TRIF, IκBα, TNFα1, IL10 and TGFß after the challenge than that fed the DS0 diet (P < 0.05). Overall, Scenedesmus ovalternus supplement enhanced the resistances of gibel carp against A. hydrophila after overwintering via the TLR signaling pathway.


Assuntos
Carpas/genética , Carpas/imunologia , Resistência à Doença/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Scenedesmus/química , Receptores Toll-Like/genética , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Doenças dos Peixes/genética , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/genética , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Distribuição Aleatória , Análise de Sequência de DNA/veterinária , Transdução de Sinais/genética , Receptores Toll-Like/metabolismo
18.
BMC Vet Res ; 15(1): 272, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370843

RESUMO

BACKGROUND: Ceftiofur Sodium is widely used in China. Our aim was to determine Ceftiofur Sodium activity and optimize dosing regimens against the pathogen Haemophilus parasuis using an in vitro and ex vivo pharmacokinetics/pharmacodynamics modeling approach. By adopting these strategies, we wanted to extend the effective life of Ceftiofur Sodium in reduce drug-resistance in pigs. RESULTS: We established an H. parasuis infection model in pigs, and assessed the pharmacokinetics of Ceftiofur Sodium in both healthy and infected animals. After Ceftiofur Sodium (10 mg/kg, i.m.) administration to healthy and H. parasuis-infected pigs, plasma based desfuroylceftiofur (a metabolite of Ceftiofur Sodium) was measured by High Performance Liquid Chromatography. The pharmacokinetics of Ceftiofur Sodium (desfuroylceftiofur) was consistent with a two-compartment open model, with first-order absorption. We observed no significant differences (P > 0.05) in pharmacokinetic parameters between healthy and infected pigs. Pharmacodynamics data showed that Ceftiofur Sodium was highly inhibitory against H. parasuis, with MIC, MBC, and MPC values of 0.003125, 0.0125 and 0.032 µg/mL, respectively. Desfuroylceftiofur in plasma also had strong bactericidal activity. Almost all H. parasuis cultured in plasma medium of Ceftiofur Sodium-inoculated healthy pigs, at each time point, were killed within 24 h. A weaker antibacterial activity was measured in infected-pig plasma medium at 18, 24, 36, and 48 h, after Ceftiofur Sodium inoculation. Pharmacokinetic parameters were combined with ex vivo pharmacodynamic parameters, and the bacteriostatic effect (36.006 h), bactericidal effect (71.637 h) and clearance (90.619 h) within 24 h, were determined using the Hill equation. Dose-calculation equations revealed the optimal dose of Ceftiofur Sodium to be 0.599-1.507 mg/kg. CONCLUSIONS: There were no significant differences in Ceftiofur Sodium pharmacokinetic parameters between healthy and infected pigs, although pharmacokinetics/pharmacodynamics fitting curves showed obviously differences. The optimal dose of Ceftiofur Sodium was lower than recommended (3 mg/kg), which may provide improved treatments for Glässers disease, with lower drug-resistance possibility.


Assuntos
Cefalosporinas , Infecções por Haemophilus/veterinária , Modelos Biológicos , Animais , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefalosporinas/farmacocinética , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Infecções por Haemophilus/tratamento farmacológico , Infecções por Haemophilus/microbiologia , Haemophilus parasuis/efeitos dos fármacos , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/microbiologia
19.
Molecules ; 24(3)2019 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-30678321

RESUMO

Nitrogen (N) forms are closely related to tea quality, however, little is known about the characteristics of quality chemical components in tea under the spatial heterogeneity of different N forms. In this study, a split-root system, high performance liquid chromatography (HPLC), and root analysis system (WinRHIZO) were used to investigate free amino acids (FAAs) and root length of tea plants under the spatial heterogeneity of different N forms. Uniform. (U.) ammonium (NH4⁺) (both compartments had NH4⁺), U. nitrate (NO3-) (both compartments had NO3-), Split. (Sp.) NH4⁺ (one of the compartments had NH4⁺), and Sp. NO3- (the other compartment had NO3-) were performed. The ranking of total FAAs in leaves were as follows: U. NH4⁺ > Sp. NH4⁺/Sp. NO3- > U. NO3-. The FAA characteristics of Sp. NH4⁺/Sp. NO3- were more similar to those of U. NO3-. The contents of the important FAAs (aspartic acid, glutamic acid, and theanine) that determine the quality of tea, increased significantly in U. NH4⁺. The total root length in U. NH4⁺ was higher than that in the other treatments. More serious root browning was found in U. NO3-. In conclusion, NH4⁺ improved the accumulations of FAAs in tea leaves, which might be attributed to the root development.


Assuntos
Aminoácidos/química , Camellia sinensis/química , Nitrogênio/química , Valor Nutritivo , Compostos Fitoquímicos/química , Chá/química , Folhas de Planta/química , Raízes de Plantas/química
20.
Molecules ; 24(3)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717241

RESUMO

Theanine, a unique amino acid in Camellia sinensis, accounts for more than 50% of total free amino acids in tea and has a significant contribution to the quality of green tea. Previous research indicated that theanine is synthesized from glutamic acid (Glu) and ethylamine mainly in roots, and that theanine accumulation depends on the availability of ethylamine which is derived from alanine (Ala) decarboxylation catalyzed by alanine decarboxylase (AlaDC). However, the specific gene encoding AlaDC protein remains to be discovered in tea plants or in other species. To explore the gene of AlaDC in tea plants, the differences in theanine contents and gene expressions between pretreatment and posttreatment of long-time nitrogen starvation were analyzed in young roots of two tea cultivars. A novel gene annotated as serine decarboxylase (SDC) was noted for its expression levels, which showed high consistency with theanine content, and the expression was remarkably high in young roots under sufficient nitrogen condition. To verify its function, full-length complementary DNA (cDNA) of this candidate gene was cloned from young roots of tea seedlings, and the target protein was expressed and purified from Escherichia coli (E. coli). The enzymatic activity of the protein for Ala and Ser was measured in vitro using ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). The results illustrated that the target protein could catalyze the decarboxylation of Ala despite of its high similarity with SDC from other species. Therefore, this novel gene was identified as AlaDC and named CsAlaDC. Furthermore, the gene expression levels of CsAlaDC in different tissues of tea plants were also quantified with quantitative real-time PCR (qRT-PCR). The results suggest that transcription levels of CsAlaDC in root tissues are significantly higher than those in leaf tissues. That may explain why theanine biosynthesis preferentially occurs in the roots of tea plants. The expression of the gene was upregulated when nitrogen was present, suggesting that theanine biosynthesis is regulated by nitrogen supply and closely related to nitrogen metabolism for C. sinensis. The results of this study are significant supplements to the theanine biosynthetic pathway and provide evidence for the differential accumulation of theanine between C. sinensis and other species.


Assuntos
Alanina/metabolismo , Camellia sinensis/genética , Carboxiliases/genética , Regulação da Expressão Gênica de Plantas , Glutamatos/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Camellia sinensis/enzimologia , Carboxiliases/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Etilaminas/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Nitrogênio/deficiência , Nitrogênio/farmacologia , Especificidade de Órgãos , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Plântula/enzimologia , Plântula/genética , Serina/metabolismo , Chá
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa