Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nano Lett ; 23(15): 7114-7119, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470781

RESUMO

We present laser-driven rescattering of electrons at a nanometric protrusion (nanotip), which is fabricated with an in situ neon ion sputtering technique applied to a tungsten needle tip. Electron energy spectra obtained before and after the sputtering show rescattering features, such as a plateau and high-energy cutoff. Extracting the optical near-field enhancement in both cases, we observe a strong increase of more than 2-fold for the nanotip. Accompanying finite-difference time-domain (FDTD) simulations show a good match with the experimentally extracted near-field strengths. Additionally, high electric field localization for the nanotip is found. The combination of transmission electron microscope imaging of such nanotips and the determination of the near-field enhancement by electron rescattering represent a full characterization of the electric near-field of these intriguing electron emitters. Ultimately, nanotips as small as single nanometers can be produced, which is of utmost interest for electron diffraction experiments and low-emittance electron sources.

2.
J Am Chem Soc ; 145(23): 12487-12498, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37261429

RESUMO

High-quality devices based on layered heterostructures are typically built from materials obtained by complex solid-state physical approaches or laborious mechanical exfoliation and transfer. Meanwhile, wet-chemically synthesized materials commonly suffer from surface residuals and intrinsic defects. Here, we synthesize using an unprecedented colloidal photocatalyzed, one-pot redox reaction a few-layers bismuth hybrid of "electronic grade" structural quality. Intriguingly, the material presents a sulfur-alkyl-functionalized reconstructed surface that prevents it from oxidation and leads to a tuned electronic structure that results from the altered arrangement of the surface. The metallic behavior of the hybrid is supported by ab initio predictions and room temperature transport measurements of individual nanoflakes. Our findings indicate how surface reconstructions in two-dimensional (2D) systems can promote unexpected properties that can pave the way to new functionalities and devices. Moreover, this scalable synthetic process opens new avenues for applications in plasmonics or electronic (and spintronic) device fabrication. Beyond electronics, this 2D hybrid material may be of interest in organic catalysis, biomedicine, or energy storage and conversion.

3.
Nanotechnology ; 34(17)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36649645

RESUMO

Flexible electrodes using nanowires (NWs) suffer from challenges of long-term stability and high junction resistance which limit their fields of applications. Welding via thermal annealing is a common strategy to enhance the conductivity of percolated NW networks, however, it affects the structural and mechanical integrity of the NWs. In this study we show that the decoration of NWs with an ultrathin metal oxide is a potential alternative procedure which not only enhances the thermal and chemical stability but, moreover, provides a totally different mechanism to reduce the junction resistance upon heat treatment. Here, we analyze the effect of SnOxdecoration on the conductance of silver NWs and NW junctions by using a four-probe measurement setup inside a scanning electron microscope. Dedicated transmission electron microscopy analysis in plan-view and cross-section geometry are carried out to characterize the nanowires and the microstructure of the junctions. Upon heat treatment the junction resistance of both plain silver NWs and SnOx-decorated NWs is reduced by around 80%. While plain silver NWs show characteristic junction welding during annealing, the SnOx-decoration reduces junction resistance by a solder-like process which does not affect the mechanical integrity of the NW junction and is therefore expected to be superior for applications.

4.
Angew Chem Int Ed Engl ; 62(47): e202314183, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37815890

RESUMO

Three-dimensionally (3D) well-ordered and highly integrated graphene hybrid architectures are considered to be next-generation multifunctional graphene materials but still remain elusive. Here, we report the first realization of unprecedented 3D-patterned graphene nano-ensembles composed of a graphene monolayer, a tailor-made structured organophenyl layer, and three metal oxide films, providing the first example of such a hybrid nano-architecture. These spatially resolved and hierarchically structured quinary hybrids are generated via a two-dimensional (2D)-functionalization-mediated atomic layer deposition growth process, involving an initial lateral molecular programming of the graphene lattice via lithography-assisted 2D functionalization and a subsequent stepwise molecular assembly in these regions in the z-direction. Our breakthrough lays the foundation for the construction of emerging 3D-patterned graphene heterostructures.

5.
Angew Chem Int Ed Engl ; 61(39): e202208163, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35903982

RESUMO

Metal-organic frameworks (MOFs) have attracted increasing interest for broad applications in catalysis and gas separation due to their high porosity. However, the insulating feature and the limited active sites hindered MOFs as photocathode active materials for application in photoelectrocatalytic hydrogen generation. Herein, we develop a layered conductive two-dimensional conjugated MOF (2D c-MOF) comprising sp-carbon active sites based on arylene-ethynylene macrocycle ligand via CuO4 linking, named as Cu3 HHAE2 . This sp-carbon 2D c-MOF displays apparent semiconducting behavior and broad light absorption till the near-infrared band (1600 nm). Due to the abundant acetylene units, the Cu3 HHAE2 could act as the first case of MOF photocathode for photoelectrochemical (PEC) hydrogen generation and presents a record hydrogen-evolution photocurrent density of ≈260 µA cm-2 at 0 V vs. reversible hydrogen electrode among the structurally-defined cocatalyst-free organic photocathodes.

6.
Soft Matter ; 17(42): 9765-9771, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34647955

RESUMO

The molecular self-organization of α,ω-dihexylsexithiophene (α,ω-DH6T) monolayers prepared at the solvent-water interface is investigated by complementary microscopy techniques. Our study focuses on the influence of solvents and initial droplet volume on the resulting film morphology. Long-range extended domains in the monolayer regime are detected by visible light microscopy only for toluene. Small-area electron diffraction (SAED) proves the formation of single-crystalline monolayers with structural parameters identical to the organic bulk crystals. In comparison with conventional vacuum sublimated thin films a deviant molecular orientation, derived from near-edge-X-ray absorption fine structure (NEXAFS) in combination with a lower step height measured by atomic-force-microscopy (AFM), indicates a different behaviour of the flexible terminal hexyl chains during growth in a liquid surrounding. Furthermore, a structural degradation over time is observed which is caused by residual solvent molecules that are incorporated during the transfer procedure.

7.
Inorg Chem ; 59(3): 1973-1984, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31971380

RESUMO

Cu2ZnSnS4 and Cu2ZnSnSe4 (CZTS and CZTSe, respectively) and their mixed chalcogenide phase Cu2ZnSnSxSe4-x (CZTSS(e)) are benign and cheap photovoltaic absorber materials that represent a valuable alternative to the more expensive chalcogenide systems: i.e., Cu(In,Ga)SS(e)2 (CIGSS(e)). One of the main challenges related to the fabrication of CZTS(e) layers is the control over both the crystalline phase (tetragonal, cubic, or hexagonal) and the formation of binary (MS, M = Cu(II), Zn(II), Sn(II); M'2-xS, M'= Cu(I), x = 0, 0.2; M″S2, M″ = Sn(IV)) and ternary products (CTS phases, Cu2SnS3, Cu3SnS4) that hinder the performance of the corresponding devices. In the present work, we rationalize the formation pathway of the CZTS phase through binary and ternary products when salt precursors with chloride and acetate as counteranions, respectively, are employed. The results show that the counteranions have a remarkable influence on the formation pathway of CZTS nanoparticles. The use of chloride precursors leads to the predominant formation of CTSs ternary phases (Cu2SnS3, Cu3SnS4), whereas the formation of the CZTS phase is not observed even for higher temperature and longer reaction time (250 °C, 24 h). In the case of acetates the copresence of CZTS as the main product, together with binary and ternary phases, is observed in the early stages of the reaction even at lower temperature and shorter reaction time (200 °C, 2 h), while when the reaction time and temperature are increased, only the CZTS phase is observed. In addition to a careful microstructural characterization of the as-synthesized materials by Raman spectroscopy, X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HRTEM), we shed light on the reactivity among the metal precursors, the organic ligand oleylamine, and the sulfur precursor carbon disulfide (CS2) by 13C nuclear magnetic resonance (13C NMR) and investigate in depth the effect on particle surfaces by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and XPS. A rationale for the formation pathway of CZTS nanoparticles is proposed and supported by experimental evidence.

8.
J Chem Phys ; 153(10): 104702, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32933289

RESUMO

Supported catalytically active liquid metal solutions have been receiving increasing attention recently. We investigated the oxidation behavior of macroscopic Rh-Ga alloy droplets and Rh-Ga model catalyst nanoparticles supported on SiO2/Si(100) with low Rh content (<2.5 at. %) by x-ray photoelectron spectroscopy in ultra-high vacuum and under near-ambient pressure conditions using different photon energies and also using transmission electron microscopy. The experiments are accompanied by computational studies on the Ga oxide/Rh-Ga interface and Rh-Ga intermetallic compounds. For both Rh-Ga alloy droplets and Rh-Ga model catalyst nanoparticles, exposure to molecular oxygen leads to the formation of an oxide shell in which Rh is enriched. Transmission electron microscopy on the Rh-Ga nanoparticles confirms the formation of an ∼4 nm thick gallium oxide film containing Rh. Based on ab initio molecular dynamics and computational studies on the Ga2O3/Ga interface, it is concluded that Rh incorporation into the Ga2O3 film occurs by substituting octahedrally coordinated Ga.

10.
Nanotechnology ; 26(42): 425701, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26421507

RESUMO

The ability to characterize a structure into the finest details in a quantitative manner is a key issue to understanding and controlling nanoscale phase separation in novel nanomaterials. In this work, we consider the detectability of lateral composition modulation (LCM), a type of nanoscale phase separation in GaAs(1-x)Bix epilayers, by x-ray diffraction (XRD). We show that the satellite peaks due to LCM are hardly detectable in reasonable time with a lab x-ray diffractometer for GaAs(1-x)Bix samples with an average x up to 25% and relative modulation up to 50%. This is in contrast to LCM reported in other III-V combinations, where the intensity of the satellite peak is relatively high and can be easily detected. Our theoretical considerations are complemented experimentally using highly brilliant synchrotron radiation. The results are in good agreement with the predictions. This work provides a guideline for the systematic characterization of LCM in zincblende III-V semiconductor epilayers and points to the critical role of quantitative characterization of nanoscale phase separation.

11.
Nanotechnology ; 25(20): 205605, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24786304

RESUMO

We report the formation and phase transformation of Bi-containing clusters in GaAs(1-x)Bi(x) epilayers upon annealing. The GaAs(1-x)Bi(x) layers were grown by molecular beam epitaxy under low (220 °C) and high (315 °C) temperatures and subsequently annealed using different temperatures and annealing times. Bi-containing clusters were identified only in the annealed samples that were grown at low temperature, revealing a relatively homogeneous size distribution. Depending on the annealing temperature and duration, the clusters show different sizes ranging from 5 to 20 nm, as well as different crystallographic phase, being coherently strained zincblende GaAs(1-x)Bi(x) (zb Bi-rich Ga(As, Bi)) clusters or rhombohedral pure Bi (rh-Bi) clusters. We found that: (1) the formation of the zb Bi-rich Ga(As, Bi) clusters is driven by the intrinsic tendency of the alloy to phase separately and is mediated by the native point defects present in the low temperature grown epilayers; (2) the phase transformation from zb Bi-rich Ga(As, Bi) to rh-Bi nucleates in zincblende {111} planes and grows until total consumption of Bi in the GaAs matrix. We propose a model accounting for the formation and phase transformation of Bi-containing clusters in this system. Furthermore, our study reveals the possibility to realize self-organized zb Bi-rich Ga(As, Bi) clusters that can exhibit QD-like features.

12.
World J Stem Cells ; 16(2): 191-206, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38455098

RESUMO

BACKGROUND: Knee osteoarthritis (KOA) is a common orthopedic condition with an uncertain etiology, possibly involving genetics and biomechanics. Factors like changes in chondrocyte microenvironment, oxidative stress, inflammation, and immune responses affect KOA development. Early-stage treatment options primarily target symptom relief. Mesenchymal stem cells (MSCs) show promise for treatment, despite challenges. Recent research highlights microRNAs (miRNAs) within MSC-released extracellular vesicles that can potentially promote cartilage regeneration and hinder KOA progression. This suggests exosomes (Exos) as a promising avenue for future treatment. While these findings emphasize the need for effective KOA progression management, further safety and efficacy validation for Exos is essential. AIM: To explore miR-29a's role in KOA, we'll create miR-29a-loaded vesicles, testing for early treatment in rat models. METHODS: Extraction of bone marrow MSC-derived extracellular vesicles, preparation of engineered vesicles loaded with miR-29a using ultrasonication, and identification using quantitative reverse transcription polymerase chain reaction; after establishing a rat model of KOA, rats were randomly divided into three groups: Blank control group injected with saline, normal extracellular vesicle group injected with normal extracellular vesicle suspension, and engineered extracellular vesicle group injected with engineered extracellular vesicle suspension. The three groups were subjected to general behavioral observation analysis, imaging evaluation, gross histological observation evaluation, histological detection, and immunohistochemical detection to compare and evaluate the progress of various forms of arthritis. RESULTS: General behavioral observation results showed that the extracellular vesicle group and engineered extracellular vesicle group had better performance in all four indicators of pain, gait, joint mobility, and swelling compared to the blank control group. Additionally, the engineered extracellular vesicle group had better pain relief at 4 wk and better knee joint mobility at 8 wk compared to the normal extracellular vesicle group. Imaging examination results showed that the blank control group had the fastest progression of arthritis, the normal extracellular vesicle group had a relatively slower progression, and the engineered extracellular vesicle group had the slowest progression. Gross histological observation results showed that the blank control group had the most obvious signs of arthritis, the normal extracellular vesicle group showed signs of arthritis, and the engineered extracellular vesicle group showed no significant signs of arthritis. Using the Pelletier gross score evaluation, the engineered extracellular vesicle group had the slowest progression of arthritis. Results from two types of staining showed that the articular cartilage of rats in the normal extracellular vesicle and engineered extracellular vesicle groups was significantly better than that of the blank control group, and the engineered extracellular vesicle group had the best cartilage cell and joint surface condition. Immunohistochemical detection of type II collagen and proteoglycan showed that the extracellular matrix of cartilage cells in the normal extracellular vesicle and engineered extracellular vesicle groups was better than that of the blank control group. Compared to the normal extracellular vesicle group, the engineered extracellular vesicle group had a better regulatory effect on the extracellular matrix of cartilage cells. CONCLUSION: Engineered Exos loaded with miR-29a can exert anti-inflammatory effects and maintain extracellular matrix stability, thereby protecting articular cartilage, and slowing the progression of KOA.

13.
Nat Commun ; 15(1): 2002, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443353

RESUMO

The development of a robust quasi-ohmic contact with minimal resistance, good stability and cost-effectiveness is crucial for perovskite solar cells. We introduce a generic approach featuring a Lewis-acid layer sandwiched between dopant-free semicrystalline polymer and metal electrode in perovskite solar cells, resulting in an ideal quasi-ohmic contact even at elevated temperature up to 85 °C. The solubility of Lewis acid in alcohol facilitates nondestructive solution processing on top of polymer, which boosts hole injection from polymer into metal by two orders of magnitude. By integrating the polymer-acid-metal structure into solar cells, devices exhibit remarkable resilience, retaining 96% ± 3%, 96% ± 2% and 75% ± 7% of their initial efficiencies after continuous operation in nitrogen at 35 °C for 2212 h, 55 °C for 1650 h and 85 °C for 937 h, respectively. Leveraging the Arrhenius relation, we project an impressive T80 lifetime of 26,126 h at 30 °C.

14.
Nanotechnology ; 24(25): 255701, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23708384

RESUMO

The detection of non-uniform magnetic element distribution and phase separation has been highly challenging in dilute magnetic semiconductor alloys. Here, we present a dedicated transmission electron microscopy (TEM) investigation of epitaxial GaN:Gd thin films and unambiguously identify the occurrence of nano-scale coherent GdN clusters. The films were grown by molecular beam epitaxy with Gd concentrations varying between 10(16) and 10(19) cm(-3). The TEM results revealed the presence of nano-scale, coherently strained platelets lying parallel to the (0001) basal planes of the wurtzite GaN matrix. The platelet-shaped clusters consist of GdN as verified by chemically sensitive Z-contrast scanning TEM imaging. The cluster dimension as well as the displacement of the distorted lattice along the [0001] direction are quantitatively determined by high-resolution TEM based on geometric phase analysis. Dynamic strain contrast calculations taking the measured displacement field as an input parameter attained an excellent agreement with the experimental diffraction contrast results, which enables an estimate of average cluster size and distance. The GdN platelet clusters are of two monolayer thickness with a base diameter of about 2 nm for samples with low Gd concentrations (10(16) cm(-3)) and about 4 nm for samples with high Gd concentrations (10(19) cm(-3)). A discussion about the local stress environment establishes that the GdN platelets are incorporated in a metastable wurtzite crystal phase.

15.
Front Oncol ; 13: 1173181, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37503314

RESUMO

Background: Colon cancer (CC) is a highly heterogeneous malignancy associated with high morbidity and mortality. Pyroptosis is a type of programmed cell death characterized by an inflammatory response that can affect the tumor immune microenvironment and has potential prognostic and therapeutic value. The aim of this study was to evaluate the association between pyroptosis-related gene (PRG) expression and CC. Methods: Based on the expression profiles of PRGs, we classified CC samples from The Cancer Gene Atlas and Gene Expression Omnibus databases into different clusters by unsupervised clustering analysis. The best prognostic signature was screened and established using least absolute shrinkage and selection operator (LASSO) and multivariate COX regression analyses. Subsequently, a nomogram was established based on multivariate COX regression analysis. Next, gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were performed to explore the potential molecular mechanisms between the high- and low-risk groups and to explore the differences in clinicopathological characteristics, gene mutation characteristics, abundance of infiltrating immune cells, and immune microenvironment between the two groups. We also evaluated the association between common immune checkpoints and drug sensitivity using risk scores. The immunohistochemistry staining was utilized to confirm the expression of the selected genes in the prognostic model in CC. Results: The 1163 CC samples were divided into two clusters (clusters A and B) based on the expression profiles of the 33 PRGs. Genes with prognostic value were screened from the DEGs between the two clusters, and an eight PRGs prognostic model was constructed. GSEA and GSVA of the high- and low-risk groups revealed that they were mainly enriched in inflammatory response-related pathways. Compared to those in the low-risk group, patients in the high-risk group had worse overall survival, an immunosuppressive microenvironment, and worse sensitivity to immunotherapy and drug treatment. Conclusion: Our findings provide a foundation for future research targeting pyroptosis and new insights into prognosis and immunotherapy from the perspective of pyroptosis in CC.

16.
ACS Appl Mater Interfaces ; 15(20): 24570-24582, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37167419

RESUMO

The application of one kind of metal-organic framework (MOF) material used in multiple fields is one of the most interesting research topics. In this work, four new tetra-nuclear cluster-based lanthanide metal-organic frameworks (LnMOFs) [Ln2(BTDB)3(DMA)(phen)]n (Ln = Tb TbMOF, Eu EuMOF, Gd GdMOF, Tb1.830Eu0.170 Tb,EuMOF, 3,5-bis(trifluoromethyl)-4',4″-dicarboxytriphenylamine = H2BTDB, 1,10-phenanthroline = phen) are obtained based on the ligand of H2BTDB that is synthesized in our laboratory, and the precise single-crystal structure of H2BTDB is obtained for the first time. The white phosphor was obtained by facilely hybridizing two components of the orange-yellow emission phosphor of Tb,EuMOF and the blue luminescence material of triphenylamine according to the trichromatic theory. At the same time, TbMOF, EuMOF, Tb,EuMOF, and the white phosphor can be used for information encryption, demonstrating their potential application in the field of anti-counterfeiting. Tb,EuMOF is also a multi-mode and self-calibrating thermometer within a broad temperature range of 110-300 K. Further studies show that EuMOF is a rapid response sensor for Fe2+, with a very low limit of detection of 2.0 nM, which is much lower than the national standards for Fe2+ (GB 5749-2005, 5.357 µM). It can achieve strong anti-interference detection of Fe2+ in actual samples of tap water and lake water. In addition, EuMOF can also be made into an easy-to-use sensing device of test paper for real-time and visual sensing of Fe2+.

17.
Mol Med Rep ; 28(1)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37203399

RESUMO

In the field of orthopedics, defects in large bones have proven challenging to resolve. The aim of the present study was to address this problem through the combination of tantalum metal (pTa) with exosomes derived from bone marrow mesenchymal stem cells (BMSCs), which have the potential to enhance regeneration of full thickness femoral bone defects in rats. Cell culture results demonstrated that exosomes improved the proliferation and differentiation of BMSCs. Following establishment of a supracondylar femoral bone defect, exosomes and pTa were implanted into the defect area. Results demonstrated that pTa acts as a core scaffold for cell adhesion and exhibits good biocompatibility. Moreover, micro­CT scan results as well as histological examination demonstrated that pTa had a significant effect on osteogenesis, with the addition of exosomes further promoting bone tissue regeneration and repair. In conclusion, this novel composite scaffold can effectively promote bone regeneration in large bone defect areas, providing a new approach for the treatment of large bone defects.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Ratos , Animais , Tantálio/metabolismo , Tantálio/farmacologia , Porosidade , Exossomos/metabolismo , Osteogênese , Regeneração Óssea , Fêmur , Células-Tronco Mesenquimais/metabolismo , Alicerces Teciduais , Diferenciação Celular , Engenharia Tecidual/métodos
18.
Orthop Surg ; 15(12): 3046-3054, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37963829

RESUMO

Bone nonunion and bone defects frequently occur following high-energy open injuries or debridement surgeries, presenting complex challenges to treatment and significantly affecting patients' quality of life. At present, there are three primary treatment options available for addressing bone nonunion and bone defects: vascularized bone grafts, the Masquelet technique, and the Ilizarov technique. The Ilizarov technique, also known as distraction osteogenesis, is widely favored by orthopedic surgeons because of several advantages, including minimal soft tissue requirements, low infection risk, and short consolidation time. However, in recent years, the application of the Masquelet technique has resulted in novel treatment methods for managing post-traumatic bone infections when bone defects are present. Although these new techniques do not constitute a panacea, they continue to be the most commonly employed options for treating complex large bone nonunion and bone defects. This review evaluates the currently available research on the Ilizarov and Masquelet bone transport techniques applied at various anatomical sites. Additionally, it explores treatment durations and associated complications to establish a theoretical foundation that can guide clinical treatment decisions and surgical procedures for the management of bone nonunion and bone defects.


Assuntos
Técnica de Ilizarov , Osteogênese por Distração , Fraturas da Tíbia , Humanos , Qualidade de Vida , Estudos Retrospectivos , Resultado do Tratamento , Fraturas da Tíbia/cirurgia
19.
Sci Rep ; 13(1): 4458, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932106

RESUMO

Isolated active sites have great potential to be highly efficient and stable in heterogeneous catalysis, while enabling low costs due to the low transition metal content. Herein, we present results on the synthesis, first catalytic trials, and characterization of the Ga9Rh2 phase and the hitherto not-studied Ga3Rh phase. We used XRD and TEM for structural characterization, and with XPS, EDX we accessed the chemical composition and electronic structure of the intermetallic compounds. In combination with catalytic tests of these phases in the challenging propane dehydrogenation and by DFT calculations, we obtain a comprehensive picture of these novel catalyst materials. Their specific crystallographic structure leads to isolated Rhodium sites, which is proposed to be the decisive factor for the catalytic properties of the systems.

20.
Zhonghua Wai Ke Za Zhi ; 50(3): 215-8, 2012 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-22800742

RESUMO

OBJECTIVE: To explore the feasibility of laparoscopic-assisted radical right hemicolectomy with the outcome being a complete mesocolic excision (CME). METHODS: Between February 2010 and June 2011, we performed the standardized surgery of laparoscopic-assisted radical right hemicolectomy with an aim of CME on 14 patients. There were 10 males and 4 females, with an average age of 57 years (range 36 to 74 years). All the pathologic results in 14 cases were primary colonic adenocarcinoma. The TNM stages were distributed as follows: 2 in II A, 3 in II B, 3 in III A, 5 in III B and 1 in III C. RESULTS: Surgery was successfully performed for all patients without open conversion. The average operation time was (178 ± 37) minutes (range 127 to 221 minutes), average intraoperative blood loss was (67 ± 23) ml (range 30 to 110 ml), while the average number of lymph node harvest was 21 ± 7 (range 14 to 31), and the postoperative hospital stay was (10.0 ± 2.2) days (range 7 to 15 days). Minor complications occured in 2 patients. Major complications and post-operative mortality were not observed. All the patients were followed up for 3 to 19 months, no tumor recurrence or metastasis was identified. CONCLUSION: The standardized surgery of laparoscopic-assisted radical right hemicolectomy with the final outcome of CME is safe and feasible.


Assuntos
Colectomia/métodos , Neoplasias do Colo/cirurgia , Mesocolo/cirurgia , Adulto , Idoso , Estudos de Viabilidade , Feminino , Seguimentos , Humanos , Laparoscopia/métodos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa