Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Inorg Chem ; 63(6): 3145-3151, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38277266

RESUMO

One-step purification of ethylene (C2H4) from ternary C2 hydrocarbon mixtures is a crucial task and an enduring challenge because of their similar molecular size and physical properties. Owing to their intriguing structural dynamics, flexible MOFs have attracted more attention for gas adsorption and separation. Herein, we report a flexible MOF FJI-W-66 that exhibits rarely seen "breathing" behaviors for C2 hydrocarbons. Upon activation, the channels of guest-free FJI-W-66a significantly contract to a nearly closed-pore state. FJI-W-66a shows the stepwise adsorption isotherms for C2 hydrocarbons, which suggests the occurrence of structural transformation between less open and more open phases. Breakthrough experiments provide evidence that FJI-W-66a can selectively separate C2H4 from C2H2/C2H4/C2H6 mixtures with different ratios under ambient conditions, realizing the one-step acquisition of C2H4 from ternary C2 hydrocarbons.

2.
Angew Chem Int Ed Engl ; 63(27): e202319674, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634325

RESUMO

n-C4H10 and iso-C4H10 are both important petrochemical raw materials. Considering the coexistence of the isomers in the production process, it is necessary to achieve their efficient separation through an economical way. However, to obtain high-purity n-C4H10 and iso-C4H10 in one-step separation process, developing iso-C4H10-exclusion adsorbents with high n-C4H10 adsorption capacity is crucial. Herein, we report a cage-like MOF (SIFSIX-Cu-TPA) with small windows and large cavities which can selectively allow smaller n-C4H10 enter the pore and accommodate a large amount of n-C4H10 simultaneously. Adsorption isotherms reveal that SIFSIX-Cu-TPA not only completely excludes iso-C4H10 in a wide temperature range, but also exhibits a very high n-C4H10 adsorption capacity of 94.2 cm3 g-1 at 100 kPa and 298 K, which is the highest value among iso-C4H10-exclusion-type adsorbents. Breakthrough experiments show that SIFSIX-Cu-TPA has excellent n/iso-C4H10 separation performance and can achieve a record-high productivity of iso-C4H10 (3.2 mol kg-1) with high purity (>99.95 %) as well as 3.0 mol kg-1 of n-C4H10 (>99 %) in one separation circle. More importantly, SIFSIX-Cu-TPA can realize the efficient separation of butanes at different flow rates, temperatures, as well as under high humid condition, which indicates that SIFSIX-Cu-TPA can be deemed as an ideal platform for industrial butane isomers separation.

3.
Angew Chem Int Ed Engl ; 63(18): e202401754, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38380833

RESUMO

The one-step efficient separation of high-purity C2H4 from C2H4/C2H6 mixtures by hydrogen-bonded organic frameworks (HOFs) faces two problems: lack of strategies for constructing stable pores in HOFs and how to obtain high C2H6 selectivity. Herein, we have developed a microporous Mortise-Tenon-type HOF (MTHOF-1, MT is short for Mortise-Tenon structure) with a new self-assembly mode for C2H4/C2H6 separation. Unlike previous HOFs which usually possess discrete head-to-head hydrogen bonds, MTHOF-1 is assembled by unique consecutive side-by-side hydrogen bonds, which result in mortise-and-tenon pores decorated with orderly arranged amide groups and benzene rings. As expected, MTHOF-1 exhibits excellent stability under various conditions and shows clear separation trends for C2H6/C2H4. The IAST selectivity is as high as 2.15 at 298 K. More importantly, dynamic breakthrough experiments have demonstrated that MTHOF-1 can effectively separate the C2H6/C2H4 feed gas to obtain polymer-grade C2H4 in one step even under high-humidity conditions.

4.
Angew Chem Int Ed Engl ; 62(25): e202305041, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37101344

RESUMO

Hydrogen-bonded organic frameworks (HOFs) show great potential in energy-saving C2 H6 /C2 H4 separation, but there are few examples of one-step acquisition of C2 H4 from C2 H6 /C2 H4 because it is still difficult to achieve the reverse-order adsorption of C2 H6 and C2 H4 . In this work, we boost the C2 H6 /C2 H4 separation performance in two graphene-sheet-like HOFs by tuning pore polarization. Upon heating, an in situ solid phase transformation can be observed from HOF-NBDA(DMA) (DMA=dimethylamine cation) to HOF-NBDA, accompanied with transformation of the electronegative skeleton into neutral one. As a result, the pore surface of HOF-NBDA has become nonpolar, which is beneficial to selectively adsorbing C2 H6 . The difference in the capacities for C2 H6 and C2 H4 is 23.4 cm3 g-1 for HOF-NBDA, and the C2 H6 /C2 H4 uptake ratio is 136 %, which are much higher than those for HOF-NBDA(DMA) (5.0 cm3 g-1 and 108 % respectively). Practical breakthrough experiments demonstrate HOF-NBDA could produce polymer-grade C2 H4 from C2 H6 /C2 H4 (1/99, v/v) mixture with a high productivity of 29.2 L kg-1 at 298 K, which is about five times as high as HOF-NBDA(DMA) (5.4 L kg-1 ). In addition, in situ breakthrough experiments and theoretical calculations indicate the pore surface of HOF-NBDA is beneficial to preferentially capture C2 H6 and thus boosts selective separation of C2 H6 /C2 H4 .


Assuntos
Etano , Etilenos , Adsorção , Hidrogênio
5.
Inorg Chem ; 61(19): 7530-7536, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35511047

RESUMO

The separation of C2-C3 alkyne/alkene mixtures is important but difficult work thanks to their similar physical and chemical properties. Crystalline porous materials with high alkyne adsorption and prominent separation selectivity of alkyne/alkene mixtures have been extensively investigated because of their energy-saving merits. Herein, we report a fluorinated hybrid microporous material (FJI-W1) that exhibits unexpected water and thermal stability. Gas sorption isotherms show that FJI-W1 has ultrahigh C2H2 and C3H4 adsorption capacities of 150 and 159 cm3/g, respectively. Furthermore, dynamic breakthrough experiments indicate that the intervals of breakthrough time between the two gases for 1:99 (v/v) C2H2/C2H4 and 1:99 (v/v) C3H4/C3H6 can be up to 230 and 600 min/g, respectively. Additionally, the tests with different flow rates and three-cycle breakthrough tests demonstrate that FJI-W1 has a remarkable C2-C3 alkyne/alkene separation performance.

6.
Angew Chem Int Ed Engl ; 61(24): e202201646, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35352465

RESUMO

Selective separation using porous adsorbents is an energy-efficient alternative to traditional separation techniques. Stacked porous organic molecular frameworks (POMFs) capable of noncovalent π⋅⋅⋅π interactions are emerging as a new kind of adsorbents that facilitate green separation. Here we report a robust porous molecular crystal (TAPM-1), which is stabilized by multiple intermolecular π⋅⋅⋅π interactions. With its long-range π-stacking, TAPM-1 has excellent hydrophobicity, thermostability, recyclability, and high selectivity for aromatics over the corresponding cyclic aliphatics. This enables TAPM-1 to serve as the stationary phase in the high-resolution gas chromatographic separation of benzene and cyclohexane or toluene and methylcyclohexane.

7.
Angew Chem Int Ed Engl ; 61(42): e202210343, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-35975940

RESUMO

Because C2 H4 plays an essential role in the chemical industry, economical and energy-efficient separation of ethylene (C2 H4 ) from ethane (C2 H6 ) is extremely important. With the exception of energy-intensive cryogenic distillation, there are few one-step methods to obtain polymer-grade (≥99.95 % pure) C2 H4 from C2 H4 /C2 H6 mixtures. Here we report a highly stable metal-organic-framework (MOF) FJI-H11-Me(des) (FJI-H=Hong's group in Fujian Institute of Research on the Structure of Matter) which features one-dimensional hexagonal nonpolar pore surfaces constructed by aromatic rings and alkyl groups. This FJI-H11-Me(des) adsorbs C2 H6 rather than C2 H4 between 273 and 303 K. Practical breakthrough experiments with C2 H4 containing 1 % C2 H6 have shown that FJI-H11-Me(des) can realize the acquisition in one-step of polymer-grade, 99.95 % pure C2 H4 under various conditions including different gas flow rates, temperatures and relative humidity.

8.
Angew Chem Int Ed Engl ; 61(48): e202210012, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36219474

RESUMO

Porous supramolecular assemblies constructed by noncovalent interactions are promising for adsorptive purification of methane because of their easy regeneration. However, the poor stability arising from the weak noncovalent interactions has obstructed their practical applications. Here, we report a robust and easily regenerated polyhedron-based cationic framework assembled from a metal-organic square. This material exhibits a very low affinity for CH4 and N2 , but captures other competing gases (e.g. C2 H6 , C3 H8 , and CO2 ) with a moderate affinity. These results underpin highly selective separation of a range of gas mixtures that are relevant to natural gas and industrial off-gas. Dynamic breakthrough studies demonstrate its practical separation for C2 H6 /CH4 , C3 H8 /CH4 , CO2 /N2 , and CO2 /CH4 . Particularly, the separation time is ≈11 min g-1 for the C2 H6 /CH4 (15/85 v/v) mixture and ≈49 min g-1 for the C3 H8 /CH4 (15/85 v/v) mixture (under a flow of 2.0 mL min-1 ), respectively, enabling its capability for CH4 purification from light alkanes.


Assuntos
Dióxido de Carbono , Metano , Adsorção , Porosidade , Metais , Gases
9.
Inorg Chem ; 60(3): 1320-1324, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33417445

RESUMO

Fluorescent agents play an important role in the peroxyoxalate chemiluminescence system. However, the effect of different frameworks on chemiluminescence (CL) has not been explored. Herein two pyrene-based metal-organic frameworks (MOFs), [Pb2L]n·2nDMA·2nH2O (1) and [(Ca2L)·(DMF)3]n·2.5nDMF·6nH2O (2) (H4L = 5,5'-(-pyrene-1,6-diyl)-diisophthalic acid; DMA = N,N'-dimethylacetamide; DMF = N,N'-dimethylformamide), have been successfully synthesized and are applied to CL. They both exhibit strong and lasting emission that is visible to the naked eye and is significantly stronger than that of the ligand. More importantly, compared with 2, 1 has notably better CL performance. We infer that the reason may be that 1 has higher stability and larger open channels, which can avoid the aggregation of organic ligands as well as provide an effective pathway for the active substance to diffuse into the channels.

10.
Inorg Chem ; 60(23): 17435-17439, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34797044

RESUMO

A sodalite Cd66-cage-based metal-organic framework (MOF), namely, CPM-9S, has been constructed based on Cd9 and Cd5 metal-organic clusters (MOCs), which, to the best our knowledge, represents the first Cd-cage-based MOF that contains the highest-nuclear Cd-based MOC and the largest number of Cd2+ ions in a cage. The iodine adsorption performances in terms of the iodine adsorption capacity, adsorption isotherm, and adsorption kinetics, as well as the adsorption mechanism, have been further studied.

11.
Angew Chem Int Ed Engl ; 60(19): 10828-10832, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33619845

RESUMO

Adsorption-based separation is an important technology for C2 H2 purification due to the environmentally friendly and energy-efficient advantage. In addition to the high selectivity of C2 H2 /CO2 , the high uptake of C2 H2 also plays an important role in the separation progress. However, the trade-off between adsorption capacity and separation performance is still in a dilemma. Herein, we report a series of cage-like porous materials named FJI-H8-R (R=Me, Et, n Pr and i Pr) which all have high C2 H2 uptakes at 1 bar and 298 K. Dynamic breakthrough studies show that they all exhibit excellent C2 H2 /CO2 separation performance. Particularly, FJI-H8-Me possesses a long breakthrough time up to 90 min g-1 . Additionally, Grand Canonical Monte Carlo (GCMC) simulation reveals that the suitable pore space and geometry contribute much to the excellent separation performance.

12.
Angew Chem Int Ed Engl ; 60(14): 7547-7552, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33439524

RESUMO

Despite much intense investigation on the C2 H2 /CO2 separation, the trade-off between the adsorption capacity and separation selectivity is still tricky. To overcome the dilemma, we have rationally synthesized an ultra-stable fluorinated hybrid porous material SIFSIX-Cu-TPA with the ith-d topology. Completely differing from the famous pillar-layer fluorinated materials, SIFSIX-Cu-TPA possesses a unique pillar-cage structure, in which the SiF6 2- anions cross-link two adjacent metal nodes as pillars to stabilize the three-dimensional framework constructed by icosahedral and tetrahedral cages. As anticipated, SIFSIX-Cu-TPA has high BET surface area (1330 m2 g-1 ) as well as high C2 H2 uptake (185 cm3 g-1 at 298 K and 1 bar). At the same time, due to the obvious difference in the adsorption performance of CO2 and C2 H2 especially in the low pressure area, SIFSIX-Cu-TPA also exhibits an excellent C2 H2 /CO2 separation performance (breakthrough time up to 68 min g-1 at 298 K and 1 bar).

13.
J Am Chem Soc ; 142(35): 15020-15026, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786762

RESUMO

The pore engineering of microporous metal-organic frameworks (MOFs) has been extensively investigated in the past two decades, and an expansive library of functional groups has been introduced into various frameworks. However, the reliable procurement of MOFs possessing both a targeted pore size and preferred functionality together is less common. This is especially important since the applicability of many elaborately designed materials is often restricted by the small pore sizes of microporous frameworks. Herein, we designed and synthesized a mesoporous MOF based on Zr6 clusters and tetratopic carboxylate ligands, termed PCN-808. The accessible coordinatively unsaturated metal sites as well as the intrinsic flexibility of the framework make PCN-808 a prime scaffold for postsynthetic modification via linker installation. A linear ruthenium-based metalloligand was successfully and precisely installed into the walls of open channels in PCN-808 while maintaining the mesoporosity of the framework. The photocatalytic activity of the obtained material, PCN-808-BDBR, was examined in the aza-Henry reaction and demonstrated high conversion yields after six catalytic cycles. Furthermore, thanks to the mesoporous nature of the framework, PCN-808-BDBR also exhibits exceptional yields for the photocatalytic oxidation of dihydroartemisinic acid to artemisinin.

14.
J Am Chem Soc ; 141(7): 3129-3136, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30689379

RESUMO

The predictable topologies and designable structures of metal-organic frameworks (MOFs) are the most important advantages for this emerging crystalline material compared to traditional porous materials. However, pore-environment engineering in MOF materials is still a huge challenge when it comes to the growing requirements of expanded applications. A useful method for the regulation of pore-environments, linker installation, has been developed and applied to a series of microporous MOFs. Herein, employing PCN-700 and PCN-608 as platforms, ionic linker installation was successfully implemented in both microporous and mesoporous Zr-based MOFs to afford a series of ionic frameworks. Selective ionic dye capture results support the ionic nature of these MOFs. The mesopores in PCN-608 are able to survive after installation of the ionic linkers, which is useful for ion exchange and further catalysis. To illustrate this, Ru(bpy)32+, a commonly used photoactive cation, was encapsulated into the anionic mesoporous PCN-608-SBDC via ion exchange. Photocatalytic activity of Ru(bpy)3@PCN-608-SBDC was examined by aza-Henry reactions, which show good catalytic performance over three catalytic cycles.

15.
Mol Genet Genomics ; 294(2): 493-500, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30604070

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are a wide range of congenital structural renal defects. CAKUT is the leading cause of chronic renal failure and end-stage renal disease in children. Studies in humans and animal models have confirmed the large genetic contribution to CAKUT. The previous evidence suggested that human TBX6 coding mutations might cause CAKUT via gene-dosage insufficiency. However, the potential involvement of TBX6 noncoding mutations in CAKUT remains to be elucidated. Here, we described DNA sequencing and copy-number analysis of TBX6 in 269 Chinese subjects with CAKUT. Interestingly, we identified two heterozygous noncoding variants of TBX6 in sporadic subjects with CAKUT: one is c.769-7delT, from a subject with duplex renal and collecting system, and the other is a 3' untranslated region (3'-UTR) variant (c.1392C>T) from a subject with unilateral renal hypoplasia. These two TBX6 noncoding variants are novel and extremely rare, respectively, in human populations archived in the ExAC database. The mini-gene splicing assay showed that the TBX6 c.769-7delT variant significantly reduced the splicing efficiency of TBX6 intron 5 when compared to the wild-type control. In this work, we identified a novel splicing variant of TBX6 in human CAKUT. Our experimental observations suggested that the TBX6 noncoding variant can affect gene expression and may potentially be involved in human CAKUT.


Assuntos
Sítios de Splice de RNA/genética , Análise de Sequência de DNA , Proteínas com Domínio T/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Adolescente , Criança , Feminino , Humanos , Rim/fisiopatologia , Masculino , Mutação , Fenótipo , Anormalidades Urogenitais/fisiopatologia , Refluxo Vesicoureteral/fisiopatologia , Sequenciamento do Exoma
16.
Inorg Chem ; 58(18): 11983-11987, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31310509

RESUMO

Herein, a microporous NbO-type framwork (FJI-H23) that showed outstanding surface area (3740.4 m2·g-1) was fabricated by utilizing an azobenzene-derived carboxylate ligand. As anticipated, FJI-H23 can store 2.35 wt % H2 at 77 K up to 1 bar. Furthermore, FJI-H23 exhibits high-capacity storage of C2 and C3 hydrocarbons at room temperature. Especially, the uptake amount of C3H8 is 325.76 cm3·g-1 at 298 K, which represents the new record of C3H8 adsorption capacity in the MOFs materials. In addition, FJI-H23 exhibits excellent gravimetric total uptake of 332 cm3·g-1 at 298 K and 65 bar.

17.
J Am Chem Soc ; 140(39): 12328-12332, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30227706

RESUMO

Multicomponent metal-organic frameworks (MOFs) promise the precise placement of synergistic functional groups with atomic-level precision, capable of promoting fascinating developments in basic sciences and applications. However, the complexity of multicomponent systems poses a challenge to their structural design and synthesis. Herein, we show that linkers of low symmetry can bring new opportunities to the construction of multicomponent MOFs. A carbazole-tetracarboxylate linker of  C s point group symmetry was designed and combined with an 8-connected Zr6 cluster to generate a low-symmetry MOF, PCN-609. PCN-609 contains coordinatively unsaturated Zr sites arranged within a lattice with three crystallographically distinct pockets, which can accommodate linear linkers of different lengths. Sequential linker installation was carried out to postsynthetically insert three linear linkers into PCN-609, giving rise to a quinary MOF. Functionalization of each linker from the quinary MOF system creates multivariate pore environments with unprecedented complexity.

18.
J Am Chem Soc ; 139(46): 16939-16945, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29073358

RESUMO

Ligands with flexible conformations add to the structural diversity of metal-organic frameworks but, at the same time, pose a challenge to structural design and prediction. Representative examples include Zr-tetracarboxylate-based MOFs, which afford assorted structures for a wide range of applications, but also complicate the structural control. Herein, we systematically studied the formation mechanism of a series of (4,8)-connected Zr-tetracarboxylate-based MOFs by altering the substituents on different positions of the organic linkers. Different ligand rotamers give rise to three types of structures with flu, scu, and csq topologies. A combination of experiment and molecular simulation indicate that the steric hindrance of the substituents at different positions dictates the resulting MOF structures. Additionally, the controllable formation of different structures was successfully implemented by a combination of linkers with different steric effects at specific positions.

19.
Int J Environ Health Res ; 27(6): 487-497, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28994318

RESUMO

The aim of this study was to investigate the accumulation characteristics of tungsten (W) by different indica rice cultivars from the soil and to assess the potential risks to human health via dietary intake of W in rice consumption. A total of 153 rice (ear) samples of 15 cultivars and the corresponding surface soil samples were collected from 7 cities in Fujian Province of southeastern China. The available soil W were extracted using H2C2O4·2H2O-(NH4)2C2O4·H2O at pH 3.3). Results showed that the total soil W ranged from 2.03 mg kg-1 to 15.34 mg kg-1 and available soil W ranged from 0.03 mg kg-1 to 1.61 mg kg-1. The W concentration in brown rice varied from 7 µg kg-1 to 283 µg kg-1 and was significantly correlated with the available soil W. The highest mean TFavail (transfer factor based on available soil W) was 0.91 for Te-you 627 (hybrid, indica rice), whereas the lowest was 0.08 for Yi-you 673 (hybrid, indica rice). The TFavail decreased with the increase in available soil W, clay content, and cation exchange capacity. The consumption of the brown rice produced from the investigated areas in some cultivars by the present study may cause risks to human health.


Assuntos
Oryza/metabolismo , Poluentes do Solo/farmacocinética , Tungstênio/farmacocinética , Disponibilidade Biológica , Monitoramento Ambiental , Contaminação de Alimentos , Humanos , Solo/química , Poluentes do Solo/química , Tungstênio/química
20.
Zhongguo Zhong Yao Za Zhi ; 42(15): 2939-2945, 2017 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-29139261

RESUMO

Sichuan safflower (Carthamus tinctorius) is a traditional Chinese medicine for promoting blood circulation and removing blood stasis. In this paper, taking Sichuan province as an example, based on TM image, digital elevation model (DEM), meteorology, soil and other data, and using remote sensing and GIS technology to extract grassland, elevation, temperature and precipitation, soil and other influencing factors, the spatial distribution of the suitability of safflower was studied, and the field investigation was carried out. The results indicate that Sichuan safflower resources are mainly concentrated in the eastern and northeastern parts of Sichuan, and the suitable distribution area is about 6 277.14 km2. The area of suitable area of Dazhou is 1 143.45 km², which is suitable for the province area of 18.22%. From the county point of view, the suitable area of Dachuan is about 507.15 km², and accounting for 17.9% of county. In addition, Naxi, Qingshen, Jiangan and other 12 counties of the suitable area of more than 100 km², and accounted for more than 10% of the county. The results of remote sensing and GIS analysis are in accordance with the real area of Sichuan safflower resources. It is feasible to find out the area suitable for the growth of Sichuan safflower by 3S technologies. It can provide a scientific basis for the monitoring and development of Chinese herbal resources.


Assuntos
Carthamus tinctorius/crescimento & desenvolvimento , Plantas Medicinais/crescimento & desenvolvimento , China , Medicamentos de Ervas Chinesas , Sistemas de Informação Geográfica , Medicina Tradicional Chinesa , Solo , Telemetria , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa