RESUMO
This study investigates the relationship between self-rated health, social participation, spouse health, and depressive symptoms in older adults. It also analyzed the moderating effects of gender, drinking, visual function, diet, quality of life, and economic level on the model. We analyzed data from 5119 participants aged 60 and above, from the CLHLS. We used a partial least squares structural equation model to explore the correlation between self-rated health, spouse health, social participation, and depressive symptoms. Self-rated health was significantly correlated with spouse health, social participation, and depressive symptoms (P < 0.001). Social participation (ß=-0.034) and spouse health (ß=-0.029) were mediators of self-rated health to depressive symptoms. In addition, gender, drinking, visual function, diet, quality of life, and economic level were mediated factors. This study provides evidence that self-rated health has direct or indirect associations with depressive symptoms in older people, with social participation and spouse health playing a crucial mediating role.
Assuntos
Depressão , Nível de Saúde , Qualidade de Vida , Participação Social , Cônjuges , Humanos , Feminino , Masculino , Depressão/psicologia , Cônjuges/psicologia , Participação Social/psicologia , Idoso , Qualidade de Vida/psicologia , China , Pessoa de Meia-Idade , Inquéritos e Questionários , Idoso de 80 Anos ou mais , População do Leste AsiáticoRESUMO
BACKGROUND: To investigate a 3-stage screening procedure and explore the clinical features of subjects at Clinical High Risk (CHR) for psychosis in a representative sample of Chinese college students. METHODS: An epidemiological survey of the prevalence of the CHR syndrome in Chinese college students that was selected by stratified random sampling from Shanghai, Nanjing and Nanchang cities was done following a 3-stage procedure. Participants were initially screened with the Prodromal Questionnaire-brief version (PQ-B), and whose distress score of PQ-B exceeded 24 would be invited to a telephone assessment using the subscale for positive symptoms of the Scale of Prodromal Symptoms (SOPS)/Structured Interview for Prodromal Syndromes (SIPS). Lastly, participants who scored 3 or higher in any item of the subscale would be administered with the SIPS interview conducted by trained researchers to confirm the diagnosis of CHR syndrome. RESULTS: Twenty-three thousand sixty-three college students completed the survey during September 2017 to October 2018. Seventy-two students were diagnosed as CHR subjects, and the detection rate in the total sample was 0.3%. The peak age range for the first diagnosis of CHR was 17 to 20 years. Thirteen and forty-six were set as the cutoff points of PQ-B total score and distress score to balance the greatest sensitivity and specificity. Binary logistic regression revealed that 8 items in PQ-B showed significant distinction for detecting CHR subjects. CONCLUSIONS: The 3-stage screening method can be utilized in the detection of CHR subjects for psychosis in the general population, during which delusional ideas, perceptual abnormalities and suspiciousness deserve great attention.
Assuntos
Transtornos Psicóticos , Adolescente , Adulto , China/epidemiologia , Estudos Epidemiológicos , Humanos , Sintomas Prodrômicos , Escalas de Graduação Psiquiátrica , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/epidemiologia , Estudantes , Adulto JovemRESUMO
In signal array processing, high-resolution direction-of-arrival (DOA) estimation algorithms work well on the assumption that the system models are perfect. However, in practicality, there are imperfect system models in which sensor gain-and-phase errors are considered. In this paper, we propose a novel framework that can effectively solve direction-of-arrival estimation tasks in the presence of sensor gain-and-phase errors. In contrast to existing approaches based on phase retrieval, our method eliminates gain errors by using the compensated covariance matrix. Meanwhile, we propose a data preprocessing method by taking only one column of the compensated covariance matrix without losing any magnitude information. Additionally, the phase retrieval problem is formed by the proposed data preprocessing method. Furthermore, the phase retrieval problem is solved by the recently proposed sparse feasible point pursuit algorithm, and DOA estimates are obtained. To prevent the model from ambiguities, we employ the known DOA to place reference sources. Numerical results show that the proposed scheme achieves better performance compared to state-of-the-art approaches.
RESUMO
Schwann cell (SC) transplantation has been utilized for spinal cord repair and demonstrated to be a promising therapeutic strategy. In this study, we investigated the feasibility of combining SC transplantation with novel conduits to bridge the completely transected adult rat spinal cord. This is the first and initial study to evaluate the potential of using a fibrous piezoelectric polyvinylidene fluoride trifluoroethylene (PVDF-TrFE) conduit with SCs for spinal cord repair. PVDF-TrFE has been shown to enhance neurite growth in vitro and peripheral nerve repair in vivo. In this study, SCs adhered and proliferated when seeded onto PVDF-TrFE scaffolds in vitro. SCs and PVDF-TrFE conduits, consisting of random or aligned fibrous inner walls, were transplanted into transected rat spinal cords for 3 weeks to examine early repair. Glial fibrillary acidic protein (GFAP)+ astrocyte processes and GFP (green fluorescent protein)-SCs were interdigitated at both rostral and caudal spinal cord/SC transplant interfaces in both types of conduits, indicative of permissivity to axon growth. More noradrenergic/DßH+ (dopamine-beta-hydroxylase) brainstem axons regenerated across the transplant when greater numbers of GFAP+ astrocyte processes were present. Aligned conduits promoted extension of DßH+ axons and GFAP+ processes farther into the transplant than random conduits. Sensory CGRP+ (calcitonin gene-related peptide) axons were present at the caudal interface. Blood vessels formed throughout the transplant in both conduits. This study demonstrates that PVDF-TrFE conduits harboring SCs are promising for spinal cord repair and deserve further investigation. Biotechnol. Bioeng. 2017;114: 444-456. © 2016 Wiley Periodicals, Inc.
Assuntos
Neurônios Adrenérgicos/fisiologia , Células de Schwann/citologia , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal/fisiologia , Alicerces Teciduais/química , Neurônios Adrenérgicos/citologia , Animais , Axônios/fisiologia , Técnicas Eletroquímicas , Feminino , Hidrocarbonetos Fluorados/química , Polivinil/química , Ratos , Células de Schwann/fisiologiaRESUMO
Recently, electrospun polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) scaffolds have been developed for tissue engineering applications. These materials have piezoelectric activity, wherein they can generate electric charge with minute mechanical deformations. Since the myocardium is an electroactive tissue, the unique feature of a piezoelectric scaffold is attractive for cardiovascular tissue engineering applications. In this study, we examined the cytocompatibility and function of pluripotent stem cell derived cardiovascular cells including mouse embryonic stem cell-derived cardiomyocytes (mES-CM) and endothelial cells (mES-EC) on PVDF-TrFE scaffolds. MES-CM and mES-EC adhered well to PVDF-TrFE and became highly aligned along the fibers. When cultured on scaffolds, mES-CM spontaneously contracted, exhibited well-registered sarcomeres and expressed classic cardiac specific markers such as myosin heavy chain, cardiac troponin T, and connexin43. Moreover, mES-CM cultured on PVDF-TrFE scaffolds responded to exogenous electrical pacing and exhibited intracellular calcium handling behavior similar to that of mES-CM cultured in 2D. Similar to cardiomyocytes, mES-EC also demonstrated high viability and maintained a mature phenotype through uptake of low-density lipoprotein and expression of classic endothelial cell markers including platelet endothelial cell adhesion molecule, endothelial nitric oxide synthase, and the arterial specific marker, Notch-1. This study demonstrates the feasibility of PVDF-TrFE scaffold as a candidate material for developing engineered cardiovascular tissues utilizing stem cell-derived cells. Biotechnol. Bioeng. 2016;113: 1577-1585. © 2015 Wiley Periodicals, Inc.
Assuntos
Células-Tronco Embrionárias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Polivinil/toxicidade , Alicerces Teciduais , Animais , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Camundongos , Miócitos Cardíacos/citologiaRESUMO
This paper proposes a three-dimensional inverse synthetic aperture radar (ISAR) imaging method for high-speed targets in short-range using an impulse radar. According to the requirements for high-speed target measurement in short-range, this paper establishes the single-input multiple-output (SIMO) antenna array, and further proposes a missile motion parameter estimation method based on impulse radar. By analyzing the motion geometry relationship of the warhead scattering center after translational compensation, this paper derives the receiving antenna position and the time delay after translational compensation, and thus overcomes the shortcomings of conventional translational compensation methods. By analyzing the motion characteristics of the missile, this paper estimates the missile's rotation angle and the rotation matrix by establishing a new coordinate system. Simulation results validate the performance of the proposed algorithm.
RESUMO
Recycled PET (rPET) is gaining popularity for use in the production of new food contact materials (FCMs) under the context of circular economy. However, the limited information on contaminants in rPET from China and concerns about their potential risk are major obstacles to their use in FCM in China. Fifty-five non-volatile compounds were tentatively identified in 126 batches of hot-washed rPET flakes aimed for food packaging applications in China. Although the 55 substances are not necessarily migratable and may not end up in the contacting media, their presence indicates a need for proper management and control across the value chain. For this reason, the 55 substances prioritized on the basis of level of concerns and in-silico genotoxicity profiler. Among them, dimethoxyethyl phthalate, dibutyl phthalate, bis(2-ethylhexyl) phthalate were classified as level V substances, and Michler's ketone and 4-nitrophenol were both categorized as level V substances and had the genotoxic structure alert, while 2,4,5-trimethylaniline was specified with genotoxic structure alert. The above substances have high priority and may pose a potential risk to human health, therefore special attention should be paid to their migration from rPET. Aside from providing valuable information on non-volatile contaminants present in hot-washed rPET flakes coming from China, this article proposed a prioritization workflow that can be of great help to identify priority substances deserving special attention across the value chain.
Assuntos
Dibutilftalato , Contaminação de Alimentos , Humanos , China , Dibutilftalato/análise , Contaminação de Alimentos/análise , ReciclagemRESUMO
The recycling of polyethylene terephthalate (PET) stands as an effective strategy for mitigating plastic pollution and reducing resource waste. The study aimed to investigate the characterization and elimination efficiency of volatile organic compounds (VOCs) present in rPET at various recycling stages using comprehensive two-dimensional gas chromatography-quadrupole-time-of-flight-mass spectrometry coupled with chemometrics. The results revealed that 52, 135, 95, 44, and 33 VOCs, mostly classified into three chemical groups, were tentatively identified in virgin - PET (v-PET), cold water washed - rPET (C-rPET), decontaminated - rPET (D-rPET), melt-extruded - rPET (M-rPET), and solid-state polycondensation - rPET (S-rPET), respectively. Regarding the VOCs with high and median detection frequencies, fatty acyls showed the highest elimination efficiency (100 % and 92 %), followed by organooxygen compounds (81 % and 99 %), others (97 % and 95 %), and benzene and substituted derivatives (82 % and 95 %) in term of HS-SPME. Following the recycling process, there was a general decrease in the concentration of almost all VOCs, as evidenced by the substantial reduction of o-Xylene, hexanoic acid, octanal, and D-limonene from 18.11, 22.43, 30.74, and 7.41 mg/kg to 0, 0, 3.97, and 0 mg/kg, respectively. However, it was noteworthy that the VOCs identified in the samples were not completely extracted, owing to the limitations of HS-SPME. Furthermore, chemometrics analysis indicated significant discrimination among VOCs from vPET, C-rPET, D-rPET, and M-rPET, while indistinct differences were observed between M-rPET and S-rPET. This study contributes to the enhancement of the recycling process and emphasizes the importance of safeguarding consumer health in terms of elimination of VOCs.
Assuntos
Polietilenotereftalatos , Reciclagem , Compostos Orgânicos Voláteis , Polietilenotereftalatos/química , Compostos Orgânicos Voláteis/análise , Reciclagem/métodos , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida/métodosRESUMO
The chemical safety of poly (butylene adipate-co-terephthalate) (PBAT) based food contact articles (FCAs) has aroused increasing toxicological concerns in recent years, but the chemical characterization and associated risk assessment still remain inadequate as it fails to elucidate the distribution pattern and discern the potential genotoxic and carcinogenic hazards of the identified substances. Herein, the volatile organic compounds (VOCs) in 50 batches of PBAT-based FCAs of representative categories and 10 batches of PLA and PBAT pellets were characterized, by which 237 VOCs of 10 chemical categories were identified and exhibited characteristic distribution patterns in the chemical spaces derived from their molecular descriptors. Chemical hazards associated with the identified VOCs were discerned by a hazard-driven classification scheme integrating hazard-related knowledge from multiple publicly available sources, and 34 VOCs were found to bear genotoxic or carcinogenic hazards and to feature higher average molecular weight than the other VOCs. Finally, the Risk and hazard quotient (HQ) calculated as the metrics of risk suggested that all identified VOCs posed acceptable risks (Risk<10-4 or HQ < 1), whereas oxolane, butyrolactone, N,N-dimethylacetamide, 2-butoxyethanol, benzyl alcohol, and 1,2,3-trichloropropane posed non-negligible (Risk>10-6) genotoxic or carcinogenic risk and thus should be of prioritized concern to promote the chemical safety of PBAT-based FCAs.
Assuntos
Embalagem de Alimentos , Poliésteres , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/toxicidade , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Medição de Risco/métodos , Poliésteres/química , Poliésteres/toxicidade , HumanosRESUMO
Incorporating spent coffee grounds into single-use drinking straws for enhanced biodegradability also raises safety concerns due to increased chemical complexity. Here, volatile organic compounds (VOCs) present in coffee ground straws (CGS), polylactic acid straws (PLAS), and polypropylene straws (PPS) were characterized using headspace - solid-phase microextraction and migration assays, by which 430 and 153 VOCs of 10 chemical categories were identified by gas chromatography - mass spectrometry, respectively. Further, the VOCs were assessed for potential genetic toxicity by quantitative structure-activity relationship profiling and estimated daily intake (EDI) calculation, revealing that the VOCs identified in the CGS generally triggered the most structural alerts of genetic toxicity, and the EDIs of 37.9% of which exceeded the threshold of 0.15 µg person-1 d-1, also outnumbering that of the PLAS and PPS. Finally, 14 VOCs were prioritized due to their definite hazards, and generally higher EDIs or detection frequencies in the CGS. Meanwhile, the probability of producing safer CGS was also illustrated. Moreover, it was uncovered by chemical space that the VOCs with higher risk potentials tended to gather in the region defined by the molecular descriptor related to electronegativity or octanol/water partition coefficient. Our results provided valuable references to improve the chemical safety of the CGS, to promote consumer health, and to advance the sustainable development of food contact materials.
Assuntos
Café , Compostos Orgânicos Voláteis , Humanos , Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Octanóis , PolipropilenosRESUMO
A comparison was performed on various methods detecting the volatile contaminants (VCs) in recycled poly(ethylene terephthalate) (rPET) flakes, the results demonstrated that head-space solid phase micro-extraction combined with comprehensive two-dimensional gas chromatograph-tandem quadrupole-time-of-flight mass spectrometry (HS-SPME-GC×GC-QTOF-MS) was a sensitive, effective, accurate method, and successfully applied to analyze 57 rPET flakes collected from different recycling plants in China. A total of 212 VCs were tentatively identified, and the possible source were associated with plastic, food, and cosmetics. 45 VCs are classified as high-priority compounds with toxicity level IV or V and may pose a risk to human health. Combined chemometrics for further analysis revealed that significant differences among these three geographical recycling regions. 6, 7, and 6 volatile markers were chosen based on VIP values and S-plot among plant1 plant 2 and plant 3, respectively. The markers differed significantly between recycled rPET samples in three geographical recycling regions based on chemometrics analysis. The initial classification rate and cross-validation accuracy were 100% on the identified VCs. These significant differences demonstrate that a systematic study is needed to obtain a comprehensive data on the contamination of rPET for food contact applications in China.
Assuntos
Polietilenotereftalatos , Compostos Orgânicos Voláteis , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Polietilenotereftalatos/química , Quimiometria , Microextração em Fase Sólida/métodos , Etilenos , Compostos Orgânicos Voláteis/análiseRESUMO
Plastic packaging waste, such as polyethylene terephthalate (PET) has increased significantly in recent decades, arousing a considerable and serious public concern regarding the environment, economy, and policy. Plastic recycling is a useful tool to mitigate this issue. Here, a feasible study was performed to investigate the potential of a novel method for identifying virgin and recycled PET. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) was combined with various chemometrics, as a simple and reliable method that achieved a high discrimination rate for 105 batches of virgin PET (v-PET) and recycled PET (r-PET) based on 202 non-volatile organic compounds (NVOCs). Making use of orthogonal partial least-squares discrimination analysis (OPLS-DA) together with non-parametric tests, 26 marker compounds (i.e. 12 intentionally added substances (IAS) and 14 non-intentionally added substances (NIAS) as well as 31 marker compounds (i.e. 11 IAS and 20 NIAS) obtained from positive and combination of positive and negative ionization modes of UPLC-Q-TOF-MS, respectively, were successfully identified. Moreover, 100% accuracy was obtained using a decision tree (DT). Cross-discrimination based on misclassified samples using various chemometrics allowed the prediction accuracy to be improved and to identify a large sample set, thus greatly enhancing the application scope of this method. The possible origins of these detected compounds can be the plastic itself, as well as contamination from food, medicine, pesticides, industry-related substances, and degradation and polymerization products. As many of these compounds are toxic, especially those pesticide related, this indicates an urgent requirement for closed loop recycling. Overall, this analytical method provides a quick, accurate, and robust way to distinguish virgin from recycled PET and thus addresses the issue of potential virgin PET adulteration thereby detecting fraud in the area of PET recycling.
Assuntos
Quimiometria , Polietilenotereftalatos , Polietilenotereftalatos/análise , Espectrometria de Massas/métodos , Cromatografia Líquida , Plásticos/análise , Cromatografia Líquida de Alta Pressão/métodosRESUMO
A non-targeted method was developed for screening the semi-volatile compounds of different mechanically recycled PET intended for food contact materials. The data was further analyzed by multiple chemometrics methods to obtain the difference level, and the potential influence factors were investigated. The results showed that total dissolution with comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry was more effective than other reported methods. Based on the difference level, 97 compounds were characterized into 4 levels. 1-Methyl-2-pyrrolidinone originating from organic solvent was recognized as level IV and could be determined as the primary difference indicator. The contaminant is mainly attributed to the residuum derived from non-food consumer products. The specific types of contaminants and process parameters of the recycling, such as moisture content, properties of rPET, and temperature, were the potential key factors affecting the presence of semi-volatile compounds of mechanically recycled rPET.
Assuntos
Polietilenotereftalatos , Compostos Orgânicos Voláteis , Quimiometria , Cromatografia Gasosa-Espectrometria de Massas/métodos , Polietilenotereftalatos/química , Reciclagem , Compostos Orgânicos Voláteis/análiseRESUMO
The use of non-decontaminated recycled poly(ethylene terephthalate) (PET) in food packages arouses consumer safety concerns, and thus is a major obstacle hindering PET bottle-to-bottle recycling in many developing regions. Herein, machine learning (ML) algorithms were employed for the discrimination of 127 batches of virgin PET and recycled PET (rPET) samples based on 1247 volatile organic compounds (VOCs) tentatively identified by headspace solid-phase microextraction comprehensive two-dimensional gas chromatography quadrupole-time-of-flight mass spectrometry. 100% prediction accuracy was achieved for PET discrimination using random forest (RF) and support vector machine (SVM) algorithms. The features of VOCs bearing high variable contributions to the RF prediction performance characterized by mean decrease Gini and variable importance were summarized as high occurrence rate, dominant appearance and distinct instrument response. Further, RF and SVM were employed for PET discrimination using the simplified input datasets composed of 62 VOCs with the highest contributions to the RF prediction performance derived by the AUCRF algorithm, by which over 99% prediction accuracy was achieved. Our results demonstrated ML algorithms were reliable and powerful to address PET adulteration and were beneficial to boost food-contact applications of rPET bottles.
Assuntos
Compostos Orgânicos Voláteis , Etilenos , Aprendizado de Máquina , Ácidos Ftálicos , Polietilenotereftalatos/análise , Polietilenotereftalatos/química , Compostos Orgânicos Voláteis/análiseRESUMO
This study focuses on the formation mechanism of amino acid-derived volatile compounds (AAVC) in dry-cured mackerel (Scomberomorus niphonius) (DCM) during the process. Three kind of AAVC (3-methylbutanal, 3-methylbutanol, and phenylacetaldehyde) were detected in DCM. The content of 3-methylbutanal (14.6 mg/kg) was higher than that of phenylacetaldehyde (12.9 mg/kg), and part of which was reduced to 3-methylbutanol (5.15 mg/kg). While the corresponding intermediate, α-ketoisocaproate (156 µg/kg), was lower than that of phenylpyruvic acid (271 µg/kg), indicating its decarboxylation was limited. Five strains (Bacillus, Enterobacter, Staphylococcus, Macrococcus, and Lactobacillus) that can produce the relative transaminases and decarboxylases were involved in the production of AAVC. The most dominant strain, Bacillus (81.9%), was only involved in the production of 3-methylbutanal. The relative abundance of Staphylococcus, the sole phenylpyruvate decarboxylase-producing bacteria, was low, resulting in low product conversion. These results indicated that the production of AAVC is determined by specific microorganisms in the products.
Assuntos
Perciformes , Compostos Orgânicos Voláteis , Aminoácidos , Animais , Redes e Vias Metabólicas , Alimentos MarinhosRESUMO
Objective: This study aims to explore the difference of clinical efficacy and psychological flexibility of sertraline hydrochloride combined with acceptance and commitment therapy (ACT) or repeated transcranial magnetic stimulation (rTMS) in patients with obsessive-compulsive disorder (OCD). Materials and Methods: Sixty-three inpatients diagnosed with OCD were randomly divided into ACT group (N = 32) and rTMS group (N = 31), both of which were combined with sertraline hydrochloride. The following assessments were completed by the Hamilton Depression Scale (HAMD), Hamilton Anxiety Scale (HAMA), Yale-Brown Obsessive Compulsive Scale (Y-BOCS), Symptom Checklist 90 (SCL-90), Acceptance and Action Questionnaire (AAQ-II), and Cognitive Fusion Questionnaire (CFQ) during pretreatment, 4 weeks posttreatment, and 8-week follow-up. Results: After treatment: (1) the SCL-90 score of two groups significantly decreased from pretreatment to 8-week follow-up (P < 0.01 and P < 0.001); (2) The HAMA, HAMD, and Y-BOCS scores of the two groups significantly decreased from pretreatment to 8-week follow-up (P < 0.001 and P < 0.05); (3) No statistically significant difference of the SCL-90, HAMA, HAMD and Y-BOCS between two groups; (4) The AAQ-II and CFQ scores of the ACT group significantly decreased from 4 weeks posttreatment to 8-week follow-up (P < 0.01). However, no statistically significant difference was observed in the rTMS group (P > 0.05). Conclusions: Overall, our study suggested that sertraline hydrochloride combined with ACT or rTMS can improve the obsessive-compulsive symptoms, anxiety, and depression and has equivalent efficacy. Moreover, ACT can more effectively and durably improve the psychological flexibility of patients compared with rTMS.
RESUMO
The key aroma compounds of six commercially available dry-cured Spanish mackerel (Scomberomorus niphonius, DCSM) were identified using electronic nose (E-nose), gas chromatography-olfactometry (GC-O), and two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS). A total of 38-55 aroma compounds were identified, and 21-26 of them, which presented high flavor dilution factors based on aroma extract dilution analysis, were quantified. Lastly, 9-14 key aroma compounds with high odor-active value, including 3-methyl-1-butanal, octanal, 1-octen-3-ol, nonanal, cis-4-decenal, ethyl caproate, (E)-2-octenal, (Z)-2-nonenal decanal, 3-methyl-1-butanol, 1-heptanol, 3-octanone, 2-octanol, and 6-methyl-5-hepten-2-one, were identified as the key aroma contributors in DCSM. Results also indicated that a longer dry-curing time would promote the generation of aroma compounds. The metabolism analysis implied that the auto-oxidation/oxidation of unsaturated fatty acids, such as oleic and linoleic acid, and the enzymatic degradation of l-leucine might be potential metabolic mechanisms.
Assuntos
Alimentos em Conserva/análise , Perciformes/metabolismo , Compostos Orgânicos Voláteis/análise , Animais , China , Nariz Eletrônico , Aromatizantes/análise , Manipulação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Análise de Componente PrincipalRESUMO
Chinese kale is one of the most popular vegetables in southern China and Asia, but it has a short shelf-life. The effect of high oxygen atmospheric packaging (HOAP) treatment on the respiration rate as well as chlorophyll content and the expression of their metabolism-related genes of the soluble proteins in Chinese kale during storage were assessed. The results showed that Chinese kale subjected to HOAP treatment showed stimulated respiration rate and regulated expression of chlorophyll metabolism-related genes, such as BrChlases, BrPPH (pheophytin pheophorbide hydrolase), BrPAO (pheidea oxygenase gene), BrRCCR (red chlorophyll catabolite reductase), and BrSAG12 (senescence-associated gene), compared to the Chinese kale in the control. The activities of chlorophyll enzymes, that is, Chlase and Mg-dechelatase, were also influenced by HOAP treatment during storage. Furthermore, the total content of soluble proteins was stimulated to accumulate, and the intensity of protein bands, detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiling, increased in HOAP-treated samples. Based on the current results, as well as the results of our previous study regarding HOAP treatment of other vegetables, we speculate that HOAP may function by regulating the respiration rate and the accumulation of functional proteins, especially chlorophyll catabolic and antioxidant enzymes, to maintain the freshness of Chinese kale during storage. PRACTICAL APPLICATION: HOAP treatment could be a potential method for delaying quality changes and extending the shelf-life of Chinese kale after harvest.
Assuntos
Brassica , Embalagem de Alimentos , Oxigênio , Brassica/química , Brassica/efeitos dos fármacos , Brassica/metabolismo , China , Clorofila/análise , Embalagem de Alimentos/métodos , Embalagem de Alimentos/normas , Oxigênio/farmacologiaRESUMO
Objective: This study aimed to explore the relationship among cognitive fusion, experiential avoidance, and obsessive-compulsive symptoms in patients with obsessive-compulsive disorder (OCD). Methods: A total of 118 outpatient and inpatient patients with OCD and 109 healthy participants, gender- and age-matched, were selected using cognitive fusion questionnaire (CFQ), acceptance and action questionnaire-2nd edition (AAQ-II), Yale-Brown scale for obsessive-compulsive symptoms, Hamilton anxiety scale, and Hamilton depression scale for questionnaire testing and data analysis. Results: The levels of cognitive fusion and experiential avoidance in the OCD group were significantly higher than those in the healthy control group (P < 0.05). Regression analysis results showed that, in predicting the total score of obsessive-compulsive symptoms, AAQ-II (ß = 0.233, P < 0.05) and CFQ (ß = 0.262, P < 0.01) entered the equation, which explained 17.1% variance. In predicting anxiety, only AAQ-II (ß = 0.222, P < 0.05) entered the equation, which explained 13% variance. In the prediction of depression, AAQ-II (ß = 0.412, P < 0.001) entered the equation, which explained 17.7% variance. Conclusion: Cognitive fusion and experiential avoidance may be important factors for the maintenance of OCD, and experiential avoidance can positively predict the anxiety and depression of OCD patients.
RESUMO
Congenital heart defects affect about 1% births in the United States. Many of the defects are treated with surgically implanted patches made from inactive materials or fixed pericardium that do not grow with the patients, leading to an increased risk of arrhythmia, sudden cardiac death, and heart failure. This study investigated an angiogenic poly(ethylene glycol) fibrin-based hydrogel reinforced with an electrospun biodegradable poly(ether ester urethane) urea (BPUR) mesh layer that was designed to encourage cell invasion, angiogenesis, and regenerative remodeling in the repair of an artificial defect created onto the rat right ventricle wall. Electrocardiogram signals were analyzed, heart function was measured, and fibrosis, macrophage infiltration, muscularization, vascularization, and defect size were evaluated at 4- and 8-weeks post-surgery. Compared with rats with fixed pericardium patches, rats with BPUR-reinforced hydrogel patches had fewer arrhythmias and greater right ventricular ejection fraction and cardiac output, as well as greater left ventricular ejection fraction, fractional shorting, stroke work and cardiac output. Histology and immunofluorescence staining showed less fibrosis and less patch material remaining in rats with BPUR-reinforced hydrogel patches at 4- and 8-weeks. Rats with BPUR-reinforced hydrogel patches also had a greater volume of granular tissue, a greater volume of muscularized tissue, more blood vessels, and a greater number of leukocytes, pan-macrophages, and M2 macrophages at 8 weeks. Overall, this study demonstrated that the engineered BPUR-reinforced hydrogel patch initiated greater regenerative vascular and muscular remodeling with a limited fibrotic response, resulting in fewer incidences of arrhythmia and improved heart function compared with fixed pericardium patches when applied to heal the defects created on the rat right ventricle wall. STATEMENT OF SIGNIFICANCE: The study tested a polyurethane-reinforced hydrogel patch in a rat right ventricle wall replacement model. Compared with fixed pericardium patches, these reinforced hydrogel patches initiated greater regenerative vascular and muscular remodeling with a reduced fibrotic response, resulting in fewer incidences of arrhythmia and improved heart function at 4- and 8-weeks post surgery. Overall, the new BPUR-reinforced hydrogel patches resulted in better heart function when replacing contractile myocardium than fixed pericardium patches.