Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
NMR Biomed ; 33(4): e4216, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31943383

RESUMO

Spinal cord injuries (SCIs) are a leading cause of disability and can severely impact the quality of life. However, to date, the processes of spontaneous repair of damaged spinal cord remain incompletely understood, partly due to a lack of appropriate longitudinal tracking methods. Noninvasive, multiparametric magnetic resonance imaging (MRI) provides potential biomarkers for the comprehensive evaluation of spontaneous repair after SCI. In this study in rats, a clinically relevant contusion injury was introduced at the lumbar level that impairs both hindlimb motor and sensory functions. Quantitative MRI measurements were acquired at baseline and serially post-SCI for up to 2 wk. The progressions of injury and spontaneous recovery in both white and gray matter were tracked longitudinally using pool-size ratio (PSR) measurements derived from quantitative magnetization transfer (qMT) methods, measurements of water diffusion parameters using diffusion tensor imaging (DTI) and intrasegment functional connectivity derived from resting state functional MRI. Changes in these quantitative imaging measurements were correlated with behavioral readouts. We found (a) a progressive decrease in PSR values within 2 wk post-SCI, indicating a progressive demyelination at the center of the injury that was validated with histological staining, (b) PSR correlated closely with fractional anisotropy and transverse relaxation of free water, but did not show significant correlations with behavioral recovery, and (c) preliminary evidence that SCI induced a decrease in functional connectivity between dorsal horns below the injury site at 24 h. Findings from this study not only confirm the value of qMT and DTI methods for assessing the myelination state of injured spinal cord but indicate that they may also have further implications on whether therapies targeted towards remyelination may be appropriate. Additionally, a better understanding of changes after SCI provides valuable information to guide and assess interventions.


Assuntos
Comportamento Animal , Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/fisiopatologia , Animais , Anisotropia , Masculino , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Medula Espinal/patologia , Medula Espinal/fisiopatologia
2.
Proc Natl Acad Sci U S A ; 114(20): 5253-5258, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28461461

RESUMO

Although blood oxygenation level-dependent (BOLD) fMRI has been widely used to map brain responses to external stimuli and to delineate functional circuits at rest, the extent to which BOLD signals correlate spatially with underlying neuronal activity, the spatial relationships between stimulus-evoked BOLD activations and local correlations of BOLD signals in a resting state, and whether these spatial relationships vary across functionally distinct cortical areas are not known. To address these critical questions, we directly compared the spatial extents of stimulated activations and the local profiles of intervoxel resting state correlations for both high-resolution BOLD at 9.4 T and local field potentials (LFPs), using 98-channel microelectrode arrays, in functionally distinct primary somatosensory areas 3b and 1 in nonhuman primates. Anatomic images of LFP and BOLD were coregistered within 0.10 mm accuracy. We found that the point spread functions (PSFs) of BOLD and LFP responses were comparable in the stimulus condition, and both estimates of activations were slightly more spatially constrained than local correlations at rest. The magnitudes of stimulus responses in area 3b were stronger than those in area 1 and extended in a medial to lateral direction. In addition, the reproducibility and stability of stimulus-evoked activation locations within and across both modalities were robust. Our work suggests that the intrinsic resolution of BOLD is not a limiting feature in practice and approaches the intrinsic precision achievable by multielectrode electrophysiology.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Somatossensorial/diagnóstico por imagem , Animais , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Neurônios , Acoplamento Neurovascular/fisiologia , Reprodutibilidade dos Testes , Descanso/fisiologia , Saimiri/fisiologia
3.
J Neurosci ; 38(7): 1774-1787, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29335352

RESUMO

This study addresses one long-standing question of whether functional separations are preserved for somatosensory modalities of touch, heat, and cold nociception within primate primary somatosensory (S1) cortex. This information is critical for understanding how the nature of pain is represented in the primate brain. Using a combination of submillimeter-resolution fMRI and microelectrode local field potential (LFP) and spike recordings, we identified spatially segregated cortical zones for processing touch and nociceptive heat and cold stimuli in somatotopically appropriate areas 3a, 3b, 1, and 2 of S1 in male monkeys. The distances between zones were comparable (∼3.4 mm) across stimulus modalities (heat, cold, and tactile), indicating the existence of uniform, modality-specific modules. Stimulus-evoked LFP maps validated the fMRI maps in areas 3b and 1. Isolation of heat and cold nociceptive neurons from the fMRI zones confirmed the validity of using fMRI to probe nociceptive regions and circuits. Resting-state fMRI analysis revealed distinct intrinsic functional circuits among functionally related zones. We discovered distinct modular structures and networks for thermal nociception within S1 cortex, a finding that has significant implications for studying chronic pain syndromes and guiding the selection of neuromodulation targets for chronic pain management.SIGNIFICANCE STATEMENT Primate S1 subregions contain discrete heat and cold nociceptive modules. Modules with the same properties exhibit strong functional connection. Nociceptive fMRI response coincides with LFP and spike activities of nociceptive neurons. Functional separation of heat and cold pain is retained within primate S1 cortex.


Assuntos
Rede Nervosa/fisiopatologia , Nociceptividade , Dor/fisiopatologia , Córtex Somatossensorial/fisiopatologia , Animais , Mapeamento Encefálico , Temperatura Baixa , Temperatura Alta , Imageamento por Ressonância Magnética , Masculino , Estimulação Física , Saimiri , Células Receptoras Sensoriais , Tato , Vibração
4.
Neuroimage ; 184: 45-55, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30205207

RESUMO

Numerous studies have used functional magnetic resonance imaging (fMRI) to characterize functional connectivity between cortical regions by analyzing correlations in blood oxygenation level dependent (BOLD) signals in a resting state. However, to date, there have been only a handful of studies reporting resting state BOLD signals in white matter. Nonetheless, a growing number of reports has emerged in recent years suggesting white matter BOLD signals can be reliably detected, though their biophysical origins remain unclear. Moreover, recent studies have identified robust correlations in a resting state between signals from cortex and specific white matter tracts. In order to further validate and interpret these findings, we studied a non-human primate model to investigate resting-state connectivity patterns between parcellated cortical volumes and specific white matter bundles. Our results show that resting-state connectivity patterns between white and gray matter structures are not randomly distributed but share notable similarities with diffusion- and histology-derived anatomic connectivities. This suggests that resting-state BOLD correlations between white matter fiber tracts and the gray matter regions to which they connect are directly related to the anatomic arrangement and density of WM fibers. We also measured how different levels of baseline neural activity, induced by varying levels of anesthesia, modulate these patterns. As anesthesia levels were raised, we observed weakened correlation coefficients between specific white matter tracts and gray matter regions while key features of the connectivity pattern remained similar. Overall, results from this study provide further evidence that neural activity is detectable by BOLD fMRI in both gray and white matter throughout the resting brain. The combined use of gray and white matter functional connectivity could also offer refined full-scale functional parcellation of the entire brain to characterize its functional architecture.


Assuntos
Encéfalo/fisiologia , Substância Branca/fisiologia , Animais , Mapeamento Encefálico , Imagem de Tensor de Difusão , Substância Cinzenta/fisiologia , Imageamento por Ressonância Magnética , Vias Neurais/fisiologia , Saimiri
5.
Magn Reson Med ; 81(3): 2011-2024, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30277272

RESUMO

PURPOSE: Functional magnetic resonance imaging with BOLD contrast is widely used for detecting brain activity in the cortex. Recently, several studies have described anisotropic correlations of resting-state BOLD signals between voxels in white matter (WM). These local WM correlations have been modeled as functional-correlation tensors, are largely consistent with underlying WM fiber orientations derived from diffusion MRI, and appear to change during functional activity. However, functional-correlation tensors have several limitations. The use of only nearest-neighbor voxels makes functional-correlation tensors sensitive to noise. Furthermore, adjacent voxels tend to have higher correlations than diagonal voxels, resulting in orientation-related biases. Finally, the tensor model restricts functional correlations to an ellipsoidal bipolar-symmetric shape, and precludes the ability to detect complex functional orientation distributions (FODs). METHODS: We introduce high-angular-resolution functional-correlation imaging (HARFI) to address these limitations. In the same way that high-angular-resolution diffusion imaging (HARDI) techniques provide more information than diffusion tensors, we show that the HARFI model is capable of characterizing complex FODs expected to be present in WM. RESULTS: We demonstrate that the unique radial and angular sampling strategy eliminates orientation biases present in tensor models. We further show that HARFI FODs are able to reconstruct known WM pathways. Finally, we show that HARFI allows asymmetric "bending" and "fanning" distributions, and propose asymmetric and functional indices which may increase fiber tracking specificity, or highlight boundaries between functional regions. CONCLUSIONS: The results suggest the HARFI model could be a robust, new way to evaluate anisotropic BOLD signal changes in WM.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Algoritmos , Anisotropia , Meios de Contraste , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador/métodos
6.
Magn Reson Med ; 79(2): 1070-1082, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28547862

RESUMO

PURPOSE: In principle, MR methods that exploit magnetization transfer (MT) may be used to quantify changes in the molecular composition of tissues after injury. The ability to track such changes in injured spinal cord may allow more precise assessment of the state of neural tissues. METHODS: Z-Spectra were obtained from the cervical spinal cord before and after a unilateral dorsal column lesion in monkeys at 9.4T. The amplitudes of chemical exchange saturation transfer (CEST) and nuclear Overhauser enhancement (NOE) effects from multiple proton pools, along with nonspecific semisolid MT effects from immobile macromolecules, were quantified using a five-peak Lorenzian fitting of each Z-spectrum. RESULTS: Abnormal tissues/cysts that formed around lesion sites exhibited relatively low correlations between their Z-spectra and that of normal gray matter (GM). Compared with normal GM, cysts showed strong CEST but weak semisolid MT and NOE effects after injury. The abnormal tissues around lesion sites were heterogeneous and showed different regional Z-spectra. Different regional correlations between proton pools were observed. Longitudinally, injured spinal cord tissue exhibited remarkable recovery in all subjects. CONCLUSION: Characterization of multiple proton pools from Z-spectra permitted noninvasive, regional, quantitative assessments of changes in tissue composition of injured spinal cord over time. Magn Reson Med 79:1070-1082, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Medula Cervical/diagnóstico por imagem , Medula Cervical/lesões , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Traumatismos da Medula Espinal/diagnóstico por imagem , Animais , Medula Cervical/patologia , Masculino , Saimiri , Traumatismos da Medula Espinal/patologia
7.
Magn Reson Med ; 79(5): 2773-2783, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28905408

RESUMO

PURPOSE: Numerous studies have adopted resting-state functional MRI methods to infer functional connectivity between cortical regions, but very few have translated them to the spinal cord, despite its critical role in the central nervous system. Resting-state functional connectivity between gray matter horns of the spinal cord has previously been shown to be detectable in humans and nonhuman primates, but it has not been reported previously in rodents. METHODS: Resting-state functional MRI of the cervical spinal cord of live anesthetized rats was performed at 9.4 T. The quality of the functional images acquired was assessed, and quantitative analyses of functional connectivity in C4-C7 of the spinal cord were derived. RESULTS: Robust gray matter horn-to-horn connectivity patterns were found that were statistically significant when compared with adjacent control regions. Specifically, dorsal-dorsal and ventral-ventral connectivity measurements were most prominent, while ipsilateral dorsal-ventral connectivity was also observed but to a lesser extent. Quantitative evaluation of reproducibility also revealed moderate robustness in the bilateral sensory and motor networks that was weaker in the dorsal-ventral connections. CONCLUSIONS: This study reports the first evidence of resting-state functional circuits within gray matter in the rat spinal cord, and verifies their detectability using resting-state functional MRI at 9.4 T. Magn Reson Med 79:2773-2783, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Medula Cervical/diagnóstico por imagem , Medula Cervical/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Animais , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
8.
J Chem Phys ; 141(13): 134307, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25296806

RESUMO

In this paper we elucidate, theoretically and experimentally, molecular motifs which permit Long-Lived Polarization Protected by Symmetry (LOLIPOPS). The basic assembly principle starts from a pair of chemically equivalent nuclei supporting a long-lived singlet state and is completed by coupling to additional pairs of spins. LOLIPOPS can be created in various sizes; here we review four-spin systems, introduce a group theory analysis of six-spin systems, and explore eight-spin systems by simulation. The focus is on AA'XnX'n spin systems, where typically the A spins are (15)N or (13)C and X spins are protons. We describe the symmetry of the accessed states, we detail the pulse sequences used to access these states, we quantify the fraction of polarization that can be stored as LOLIPOPS, we elucidate how to access the protected states from A or from X polarization and we examine the behavior of these spin systems upon introduction of a small chemical shift difference.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Alcinos/química , Simulação por Computador , Anidridos Maleicos/química , Modelos Moleculares , Piridazinas/química
9.
Polymers (Basel) ; 16(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891547

RESUMO

High-temperature vapour-phase acetylation (HTVPA) is a simultaneous acetylation and heat treatment process for wood modification. This study was the first investigation into the impact of HTVPA treatment on the resistance of wood to biological degradation. In the termite resistance test, untreated wood exhibited a mass loss (MLt) of 20.3%, while HTVPA-modified wood showed a reduced MLt of 6.6-3.2%, which decreased with an increase in weight percent gain (WPG), and the termite mortality reached 95-100%. Furthermore, after a 12-week decay resistance test against brown-rot fungi (Laetiporus sulfureus and Fomitopsis pinicola), untreated wood exhibited mass loss (MLd) values of 39.6% and 54.5%, respectively, while HTVPA-modified wood exhibited MLd values of 0.2-0.9% and -0.2-0.3%, respectively, with no significant influence from WPG. Similar results were observed in decay resistance tests against white-rot fungi (Lenzites betulina and Trametes versicolor). The results of this study demonstrated that HTVPA treatment not only effectively enhanced the decay resistance of wood but also offered superior enhancement relative to separate heat treatment or acetylation processes. In addition, all the HTVPA-modified wood specimens prepared in this study met the requirements of the CNS 6717 wood preservative standard, with an MLd of less than 3% for decay-resistant materials.

10.
Polymers (Basel) ; 14(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35160547

RESUMO

In this study, a bamboo stick board with rotary-cut bamboo veneers was successfully fabricated. Additionally, vacuum heat (VH) treatment, which is a popular thermal modification method, was used to modify bamboo sticks. Therefore, the effects of different VH treatment temperatures on the dimensional stability and flexural properties of bamboo stick boards with and without bamboo veneers were investigated. For all boards, as the temperature increased to 220 °C, the thickness change rate and equilibrium moisture content decreased, and the flexural properties increased. The results exhibited that VH treatment improved the dimensional stability and flexural properties of the boards. Furthermore, the board with veneers had lower flexural properties and higher thickness swelling after water absorption than the board without veneers (BSB). The results indicated that bamboo veneer caused low flexural properties and high thickness swelling of the board compared to the BSB. However, the bamboo veneer played an aesthetic role in the appearance of the bamboo stick board.

11.
Polymers (Basel) ; 13(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924615

RESUMO

The influence of heat treatment on the physico-mechanical properties, water resistance, and creep behavior of moso bamboo (Phyllostachys pubescens) was determined in this study. The results revealed that the density, moisture content, and flexural properties showed negative relationships with the heat treatment temperature, while an improvement in the dimensional stability (anti-swelling efficiency and anti-water absorption efficiency) of heat-treated samples was observed during water absorption tests. Additionally, the creep master curves of the untreated and heat-treated samples were successfully constructed using the stepped isostress method (SSM) at a series of elevated stresses. Furthermore, the SSM-predicted creep compliance curves fit well with the 90-day full-scale experimental data. When the heat treatment temperature increased to 180 °C, the degradation ratio of the creep resistance (rd) significantly increased over all periods. However, the rd of the tested bamboo decreased as the heat treatment temperature increased up to 220 °C.

12.
Polymers (Basel) ; 13(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34451222

RESUMO

The purpose of this study is to compare the characteristics of wood-plastic composites (WPCs) made of polypropylene (PP) and wood fibers (WFs) from discarded stems, branches, and roots of pomelo trees. The results show that the WPCs made of 30-60 mesh WFs from stems have better physical, flexural, and tensile properties than other WPCs. However, the flexural strengths of all WPCs are not only comparable to those of commercial wood-PP composites but also meet the strength requirements of the Chinese National Standard for exterior WPCs. In addition, the color change of WPCs that contained branch WFs was lower than that of WPCs that contained stem or root WFs during the initial stage of the accelerated weathering test, but the surface color parameters of all WPCs were very similar after 500 h of xenon arc accelerated weathering. Scanning electron microscope (SEM) micrographs showed many cracks on the surfaces of WPCs after accelerated weathering for 500 h, but their flexural modulus of rupture (MOR) and modulus of elasticity (MOE) values did not differ significantly during weathering. Thus, all the discarded parts of pomelo trees can be used to manufacture WPCs, and there were no significant differences in their weathering properties during 500 h of xenon arc accelerated weathering.

13.
Neuroimage Clin ; 30: 102633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33780866

RESUMO

PURPOSE: The sensitivity and accuracy of chemical exchange saturation transfer (CEST) and nuclear Overhauser enhancement (NOE) effects for assessing injury-associated changes in cervical spinal cords were evaluated in squirrel monkeys. Multiple interacting pools of protons, including one identified by an NOE at -1.6 ppm relative to water (NOE(-1.6)), were derived and quantified from fitting proton Z-spectra. The effects of down-sampled data acquisitions and corrections for non-specific factors including T1, semi-solid magnetization transfer, and direct saturation of free water (DS), were investigated. The overall goal is to develop a protocol for rapid data acquisition for assessing the molecular signatures of the injured spinal cord and its surrounding regions. METHODS: MRI scans were recorded of anesthetized squirrel monkeys at 9.4 T, before and after a unilateral dorsal column sectioning of the cervical spinal cord. Z-spectral images at 51 different RF offsets were acquired. The amplitudes of CEST and NOE effects from multiple proton pools were quantified using a six-pool Lorenzian fitting of each Z-spectrum (MTRmfit). In addition, down-sampled data using reduced selections of RF offsets were analyzed and compared. An apparent exchange-dependent relaxation (AREXmfit) method was also used to correct for non-specific factors in quantifying regional spectra around lesion sites. RESULTS: The parametric maps from multi-pool fitting using the complete sampling data (P51e) detected unilateral changes at and around the injury. The maps derived from selected twofold down-sampled data with appropriate interpolation (P26sI51) revealed quite similar spatial distributions of different pools as those obtained using P51e at each resonance shift. Across 10 subjects, both data acquisition schemes detected significant decreases in NOE(-3.5) and NOE(-1.6) and increases in DS(0.0) and CEST(3.5) at the lesion site relative to measures of the normal tissues before injury. AREXmfit of cysts and other abnormal tissues at and around the lesion site also exhibited significant changes, especially at 3.5, -1.6 and -3.5 ppm RF offsets. CONCLUSION: These results confirm that a reduced set of RF offsets and down sampling are adequate for CEST imaging of injured spinal cord and allow shorter imaging times and/or permit additional signal averaging. AREXmfit correction improved the accuracy of CEST and NOE measures. The results provide a rapid (~13 mins), sensitive, and accurate protocol for deriving multiple NOE and CEST effects simultaneously in spinal cord imaging at high field.


Assuntos
Medula Cervical , Interpretação de Imagem Assistida por Computador , Algoritmos , Medula Cervical/diagnóstico por imagem , Imageamento por Ressonância Magnética , Prótons , Sensibilidade e Especificidade
14.
Polymers (Basel) ; 12(3)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120779

RESUMO

The purpose of this study is to investigate the natural weathering properties of unmodified and acetylated veneer overlaid wood‒plastic composites (vWPCs) manufactured by one-step hot press molding. The results show that the water absorption and thickness swelling of vWPC with acetylated veneer were lower than those of unmodified vWPC. In addition, the surface tensile strength of vWPC increased with increasing weight gain of acetylated veneer, and the flexural properties of vWPC were not significantly different. Furthermore, the results of natural weathering demonstrated that not only the photostability but also the modulus of elasticity (MOE) retention ratio and surface tensile strength of vWPC with acetylated veneer were significantly higher than those of vWPC with unmodified veneer. Thus, better dimensional stability, surface tensile strength, and weathering properties can be achieved when the vWPC is made with acetylated veneer, especially those containing veneers with a higher weight percent gain.

15.
Polymers (Basel) ; 11(7)2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31330763

RESUMO

In this study, methyltrimethoxysilane (MTMOS), methyltriethoxysilane (MTEOS), tetraethoxysilane (TEOS), and titanium(IV) isopropoxide (TTIP) were used as precursor sols to prepare wood-inorganic composites (WICs) by a sol-gel process, and subsequently, the long-term creep behavior of these composites was estimated by application of the stepped isostress method (SSM). The results revealed that the flexural modulus of wood and WICs were in the range of 9.8-10.5 GPa, and there were no significant differences among them. However, the flexural strength of the WICs (93-103 MPa) was stronger than that of wood (86 MPa). Additionally, based on the SSM processes, smooth master curves were obtained from different SSM testing parameters, and they fit well with the experimental data. These results demonstrated that the SSM was a useful approach to evaluate the long-term creep behavior of wood and WICs. According to the Eyring equation, the activation volume of the WICs prepared from MTMOS (0.825 nm3) and TEOS (0.657 nm3) was less than that of the untreated wood (0.832 nm3). Furthermore, the WICs exhibited better performance on the creep resistance than that of wood, except for the WICMTEOS. The reduction of time-dependent modulus for the WIC prepared from MTMOS was 26% at 50 years, which is the least among all WICs tested. These findings clearly indicate that treatment with suitable metal alkoxides could improve the creep resistance of wood.

16.
Neuroimage Clin ; 23: 101921, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31491830

RESUMO

PURPOSE: This study aims to systematically evaluate the accuracy and precision of pool size ratio (PSR) measurements from quantitative magnetization transfer (qMT) acquisitions using simplified models in the context of assessing injury-associated spatiotemporal changes in spinal cords of non-human primates. This study also aims to characterize changes in the spinal tissue pathology in individual subjects, both regionally and longitudinally, in order to demonstrate the relationship between regional tissue compositional changes and sensorimotor behavioral recovery after cervical spinal cord injury (SCI). METHODS: MRI scans were recorded on anesthetized monkeys at 9.4 T, before and serially after a unilateral section of the dorsal column tract. Images were acquired following saturating RF pulses at different offset frequencies. Models incorporating two pools of protons but with differing numbers of variable parameters were used to fit the data to derive qMT parameters. The results using different amounts of measured data and assuming different numbers of variable model parameters were compared. Behavioral impairments and recovery were assessed by a food grasping-retrieving task. Histological sections were obtained post mortem for validation of the injury. RESULTS: QMT fitting provided maps of pool size ratio (PSR), the relative amounts of immobilized protons exchanging magnetization compared to the "free" water. All the selected modeling approaches detected a lesion/cyst at the site of injury as significant reductions in PSR values. The regional contrasts in the PSR maps obtained using the different fittings varied, but the 2-parameter fitting results showed strong positive correlations with results from 5-parameter modeling. 2-parameter fitting results with modest (>3) RF offsets showed comparable sensitivity for detecting demyelination in white matter and loss of macromolecules in gray matter around lesion sites compared to 5-parameter fitting with fully-sampled data acquisitions. Histology confirmed that decreases of PSR corresponded to regional demyelination around lesion sites, especially when demyelination occurred along the dorsal column on the injury side. Longitudinally, PSR values of injured dorsal column tract and gray matter horns exhibited remarkable recovery that associated with behavioral improvement. CONCLUSION: Simplified qMT modeling approaches provide efficient and sensitive means to detect and characterize injury-associated demyelination in white matter tracts and loss of macromolecules in gray matter and to monitor its recovery over time.


Assuntos
Imageamento por Ressonância Magnética/métodos , Bainha de Mielina , Neuroimagem/métodos , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Animais , Comportamento Animal/fisiologia , Masculino , Modelos Teóricos , Recuperação de Função Fisiológica/fisiologia , Saimiri
17.
Polymers (Basel) ; 11(9)2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480802

RESUMO

This study investigated the feasibility of using bamboo to prepare biomorphic porous silicon carbide (bio-SiC) ceramics through a combination of sol-gel impregnation and carbothermal reduction. The effects of sintering temperature, sintering duration, and sol-gel impregnation cycles on the crystalline phases and microstructure of bio-SiC were investigated. X-ray diffraction patterns revealed that when bamboo charcoal-SiO2 composites (BcSiCs) were sintered at 1700 °C for more than 2 h, the resulting bio-SiC ceramics exhibited significant ß-SiC diffraction peaks. In addition, when the composites were sintered at 1700 °C for 2 h, scanning electron microscopy micrographs of the resulting bio-SiC ceramic prepared using a single impregnation cycle showed the presence of SiC crystalline particles and nanowires in the cell wall and cell lumen of the carbon template, respectively. However, bio-SiC prepared using three and five repeated cycles of sol-gel impregnation exhibited a foam-like microstructure compared with that prepared using a single impregnation cycle. Moreover, high-resolution transmission electron microscopy and selected area electron diffraction revealed that the atomic plane of the nanowire of bio-SiC prepared from BcSiCs had a planar distance of 0.25 nm and was perpendicular to the (111) growth direction. Similar results were observed for the bio-SiC ceramics prepared from bamboo-SiO2 composites (BSiCs). Accordingly, bio-SiC ceramics can be directly and successfully prepared from BSiCs, simplifying the manufacturing process of SiC ceramics.

18.
Nat Commun ; 10(1): 1416, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926817

RESUMO

Resting-state functional MRI (rsfMRI) has recently revealed correlated signals in the spinal cord horns of monkeys and humans. However, the interpretation of these rsfMRI correlations as indicators of functional connectivity in the spinal cord remains unclear. Here, we recorded stimulus-evoked and spontaneous spiking activity and local field potentials (LFPs) from monkey spinal cord in order to validate fMRI measures. We found that both BOLD and electrophysiological signals elicited by tactile stimulation co-localized to the ipsilateral dorsal horn. Temporal profiles of stimulus-evoked BOLD signals covaried with LFP and multiunit spiking in a similar way to those observed in the brain. Functional connectivity of dorsal horns exhibited a U-shaped profile along the dorsal-intermediate-ventral axis. Overall, these results suggest that there is an intrinsic functional architecture within the gray matter of a single spinal segment, and that rsfMRI signals at high field directly reflect this underlying spontaneous neuronal activity.


Assuntos
Fenômenos Eletrofisiológicos , Haplorrinos/fisiologia , Imageamento por Ressonância Magnética , Medula Espinal/fisiologia , Potenciais de Ação/fisiologia , Animais , Humanos , Estimulação Física , Reprodutibilidade dos Testes , Descanso , Corno Dorsal da Medula Espinal/fisiologia , Tato
19.
Polymers (Basel) ; 11(6)2019 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-31234540

RESUMO

The crystallization behavior of bamboo fiber (BF) reinforced polypropylene (PP) composites (BPCs) was investigated using a differential scanning calorimeter (DSC). The results showed that unmodified BF as a nucleation agent accelerated the crystallization rate of the PP matrix during cooling whereas there is no significant effect on the improved crystallization rate in BPCs with acetylated BFs. Based on the Avrami method, Avrami-Ozawa method, and Friedman method, the corresponding crystallization kinetics of PP reinforced with different acetylation levels of BFs were further analyzed. The results demonstrated that the crystal growth mechanism of the PP matrix for BPCs with unmodified and various acetylated BFs exhibited tabular crystal growth with heterogeneous nucleation. A higher cooling rate is required to achieve a certain relative crystallinity degree at the unit crystallization time for BPCs with a higher weight percent gain (WPG) of acetylated BFs (WPG >13%). Furthermore, based on the Friedman method, the lowest crystallization activation energy was observed for the BPCs with 19% WPG of acetylated BFs.

20.
Magn Reson Imaging ; 63: 1-11, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31376477

RESUMO

Functional MRI (fMRI) signals are robustly detectable in white matter (WM) but they have been largely ignored in the fMRI literature. Their nature, interpretation, and relevance as potential indicators of brain function remain under explored and even controversial. Blood oxygenation level dependent (BOLD) contrast has for over 25 years been exploited for detecting localized neural activity in the cortex using fMRI. While BOLD signals have been reliably detected in grey matter (GM) in a very large number of studies, such signals have rarely been reported from WM. However, it is clear from our own and other studies that although BOLD effects are weaker in WM, using appropriate detection and analysis methods they are robustly detectable both in response to stimuli and in a resting state. BOLD fluctuations in a resting state exhibit similar temporal and spectral profiles in both GM and WM, and their relative low frequency (0.01-0.1 Hz) signal powers are comparable. They also vary with baseline neural activity e.g. as induced by different levels of anesthesia, and alter in response to a stimulus. In previous work we reported that BOLD signals in WM in a resting state exhibit anisotropic temporal correlations with neighboring voxels. On the basis of these findings, we derived functional correlation tensors that quantify the correlational anisotropy in WM BOLD signals. We found that, along many WM tracts, the directional preferences of these functional correlation tensors in a resting state are grossly consistent with those revealed by diffusion tensors, and that external stimuli tend to enhance visualization of specific and relevant fiber pathways. These findings support the proposition that variations in WM BOLD signals represent tract-specific responses to neural activity. We have more recently shown that sensory stimulations induce explicit BOLD responses along parts of the projection fiber pathways, and that task-related BOLD changes in WM occur synchronously with the temporal pattern of stimuli. WM tracts also show a transient signal response following short stimuli analogous to but different from the hemodynamic response function (HRF) characteristic of GM. Thus there is converging and compelling evidence that WM exhibits both resting state fluctuations and stimulus-evoked BOLD signals very similar (albeit weaker) to those in GM. A number of studies from other laboratories have also reported reliable observations of WM activations. Detection of BOLD signals in WM has been enhanced by using specialized tasks or modified data analysis methods. In this mini-review we report summaries of some of our recent studies that provide evidence that BOLD signals in WM are related to brain functional activity and deserve greater attention by the neuroimaging community.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Anisotropia , Mapeamento Encefálico , Circulação Cerebrovascular , Substância Cinzenta/diagnóstico por imagem , Hemodinâmica , Humanos , Modelos Neurológicos , Reprodutibilidade dos Testes , Vasodilatação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa