Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Redox Biol ; 64: 102775, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37339559

RESUMO

Endothelial dysfunction results in chronic vascular inflammation, which is critical for the development of atherosclerotic diseases. Transcription factor Gata6 has been reported to regulate vascular endothelial cell activation and inflammation in vitro. Here, we aimed to explore the roles and mechanisms of endothelial Gata6 in atherogenesis. Endothelial cell (EC) specific Gata6 deletion was generated in the ApoeKO hyperlipidemic atherosclerosis mouse model. Atherosclerotic lesion formation, endothelial inflammatory signaling, and endothelial-macrophage interaction were examined in vivo and in vitro by using cellular and molecular biological approaches. EC-GATA6 deletion mice exhibited a significant decrease in monocyte infiltration and atherosclerotic lesion compared to littermate control mice. Cytosine monophosphate kinase 2 (Cmpk2) was identified as a direct target gene of GATA6 and EC-GATA6 deletion decreased monocyte adherence, migration and pro-inflammatory macrophage foam cell formation through regulation of the CMPK2-Nlrp3 pathway. Endothelial target delivery of Cmpk2-shRNA by intercellular adhesion molecule 2 (Icam-2) promoter-driven AAV9 carrying the shRNA reversed the Gata6 upregulation mediated elevated Cmpk2 expression and further Nlrp3 activation and thus attenuated atherosclerosis. In addition, C-C motif chemokine ligand 5 (Ccl5) was also identified as a direct target gene of Gata6 to regulate monocyte adherence and migration influencing atherogenesis. This study provides direct in vivo evidence of EC-GATA6 involvement in the regulation of Cmpk2-Nlrp3, as well as Ccl5, on monocyte adherence and migration in atherosclerosis development and advances our understanding of the in vivo mechanisms of atherosclerotic lesion development, and meanwhile provides opportunities for future therapeutic interventions.


Assuntos
Aterosclerose , Monócitos , Animais , Camundongos , Aterosclerose/metabolismo , Adesão Celular , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , RNA Interferente Pequeno/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
3.
J Am Heart Assoc ; 11(15): e026378, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35904197

RESUMO

Background The endothelium is essential for maintaining vascular physiological homeostasis and the endothelial injury leads to the neointimal hyperplasia because of the excessive proliferation of vascular smooth muscle cells. Endothelial Foxp1 (forkhead box P1) has been shown to control endothelial cell (EC) proliferation and migration in vitro. However, whether EC-Foxp1 participates in neointimal formation in vivo is not clear. Our study aimed to investigate the roles and mechanisms of EC-Foxp1 in neointimal hyperplasia. Methods and Results The wire injury femoral artery neointimal hyperplasia model was performed in Foxp1 EC-specific loss-of-function and gain-of-function mice. EC-Foxp1 deletion mice displayed the increased neointimal formation through elevation of vascular smooth muscle cell proliferation and migration, and the reduction of EC proliferation hence reendothelialization after injury. In contrast, EC-Foxp1 overexpression inhibited the neointimal formation. EC-Foxp1 paracrine regulated vascular smooth muscle cell proliferation and migration via targeting matrix metalloproteinase-9. Also, EC-Foxp1 deletion impaired EC repair through reduction of EC proliferation via increasing cyclin dependent kinase inhibitor 1B expression. Delivery of cyclin dependent kinase inhibitor 1B-siRNA to ECs using RGD (Arg-Gly-Asp)-peptide magnetic nanoparticle normalized the EC-Foxp1 deletion-mediated impaired EC repair and attenuated the neointimal formation. EC-Foxp1 regulates matrix metalloproteinase-9/cyclin dependent kinase inhibitor 1B signaling pathway to control injury induced neointimal formation. Conclusions Our study reveals that targeting EC-Foxp1-matrix metalloproteinase-9/cyclin dependent kinase inhibitor 1B pathway might provide future novel therapeutic interventions for restenosis.


Assuntos
Metaloproteinase 9 da Matriz , Neointima , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Endotélio/metabolismo , Fatores de Transcrição Forkhead , Hiperplasia/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Miócitos de Músculo Liso/metabolismo , Neointima/patologia , Proteínas Repressoras/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa