Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cytotechnology ; 71(2): 539-551, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30815768

RESUMO

Amniotic epithelial cells (AECs), isolated from placenta, have epithelial cells and stem cells characteristics. Most of the previous studies focused on the biological characteristics of human amniotic epithelial cells, which demonstrated amniotic epithelial cells not only had low immunogenicity and potent potential to differentiate into three germ layers, but also could secrete various immunomodulatory factors. However, compared to study on human amniotic epithelial cells, few studies have been done on other animals. In this study, sheep amniotic epithelial cells were successfully isolated and their surface makers were accessed by immunofluorescence assay, and found that AECs were expressed Oct4 and Sox2, which were necessary for maintaining the undifferentiated state of pluripotent stem cells. Based on cloning efficiency and growth kinetics assay, AECs were found to possess self-renewal capacity and the growth curve was S-shaped. In addition, AECs could be induced into adipocytes, osteoblasts and chondrocytes in vitro, showing they had multi-differential ability. Reverse transcription-polymerase chain reaction results showed that AECs expressed CD29, CD44, CD90 and CK19, and didn't expressed CD34, CD45 and the telomerase gene (TERT). Little change in chromosome number was observed in AEC cultures for up to at least the first ten passages. In summary, this study results revealed that sheep AECs possessed more advantages for cell therapy and might play a key role in cell therapy and regenerative medicine in the future.

2.
Tissue Cell ; 56: 60-70, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30736905

RESUMO

Stem cells are most likely to solve all three of diabetes's problems at once, but the previous studies have mostly focused on bone marrow mesenchymal stem cells (MSCs) and adipose tissue-derived MSCs, and few studies have been done on pancreatic MSCs. In this study, pancreatic was collected to isolate MSCs from bovine, and then their biological characteristics such as growth kinetics, surface antigen, and multilineage potential were examined. Pancreatic MSCs of bovine (B-PMSCs) could be cultured for 65 passages in vitro. Growth kinetics analyses indicated that B-PMSCs had a strong capacity for self-renewal in vitro and their proliferation capacity appeared to decrease by passaging. Surface antigen detection showed that B-PMSCs expressed CD29, CD44, CD73, CD90, CD106, CD166, Vimentin, Nestin and Insulin, but not expressed CD34 and CD45. Furthermore, B-PMSCs could be induced to differentiate into adipocytes, osteoblasts and smooth muscle cells as indicated by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence. Most importantly, insulin-secreting cell differentiation of B-PMSCs exhibited islet-like clusters and dithizone staining displayed scarlet, and the response of the islet-like clusters to glucose suggested that high concentration glucose (20 mM) could quickly and persistently stimulate insulin release, and from the 2.0 h of the stimulation, the insulin of 20 mM glucose group were significantly higher than the 5.5 mM group. The B-PMSCs were isolated successfully, and the cells owned powerful self-renewal ability and multiple differentiative potential. Therefore, the present study plays an important role by providing a PMSCs choice for cell therapy of diabetes and tissue engineering.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Células-Tronco Mesenquimais/citologia , Pâncreas/citologia , Adipócitos/citologia , Animais , Células da Medula Óssea/citologia , Bovinos , Proliferação de Células/genética , Separação Celular , Humanos , Células Secretoras de Insulina/citologia , Osteoblastos/citologia , Engenharia Tecidual
3.
Exp Ther Med ; 16(3): 2399-2407, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30210592

RESUMO

In the past 10 years, adipose-derived stem cells (ADSCs) have been applied due to their pluripotency. Experimental tissues have been frequently obtained from mammals, including rabbits, mice and humans, but rarely from broilers, Gallus gallus domesticus. In the present study, ADSCs were obtained from 20-day-old broiler embryos. Primary ADSCs were sub-cultured to passage 37 in vitro. The surface markers of ADSCs, namely CD29, CD31, CD44, CD71 and CD73, were detected by reverse transcription polymerase chain reaction and immunofluorescence assays. The result indicated that CD29, CD44, CD71 and CD73 were expressed on the surface of cells at various passages, but not CD31. The growth curve of cells at the different passages had a typical sigmoidal shape. Furthermore, ADSCs were successfully induced to differentiate into osteoblasts, adipocytes and hepatocyte-like cells. The results denote that the ADSCs isolated from broilers have similar biological properties to those of ADSCs obtained from other animals. The present study provided a theoretical and experimental foundation for the use of poultry as a source of stem cells, and laid a foundation for adipose tissue engineering and strategies in regenerative medicine.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa