Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Genomics ; 116(1): 110764, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113974

RESUMO

Sorafenib is currently the first-line treatment for patients with advanced liver cancer, but its therapeutic efficacy declines significantly after a few months of treatment. Therefore, it is of great importance to investigate the regulatory mechanisms of sorafenib sensitivity in liver cancer cells. In this study, we provided initial evidence demonstrating that circPHKB, a novel circRNA markedly overexpressed in sorafenib-treated liver cancer cells, attenuated the sensitivity of liver cancer cells to sorafenib. Mechanically, circPHKB sequestered miR-1234-3p, resulting in the up-regulation of cytochrome P450 family 2 subfamily W member 1 (CYP2W1), thereby reducing the killing effect of sorafenib on liver cancer cells. Moreover, knockdown of circPHKB sensitized liver cancer cells to sorafenib in vivo. The findings reveal a novel circPHKB/miR-1234-3p/CYP2W1 pathway that decreases the sensitivity of liver cancer cells to sorafenib, suggesting that circPHKB and the axis may serve as promising targets to improve the therapeutic efficacy of sorafenib against liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , MicroRNAs/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Regulação para Cima , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Família 2 do Citocromo P450/genética
2.
J Nanobiotechnology ; 22(1): 555, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261846

RESUMO

BACKGROUND: The pathogenesis of osteoarthritis (OA) involves the progressive degradation of articular cartilage. Exosomes derived from mesenchymal stem cells (MSC-EXOs) have been shown to mitigate joint pathological injury by attenuating cartilage destruction. Optimization the yield and therapeutic efficacy of exosomes derived from MSCs is crucial for promoting their clinical translation. The preconditioning of MSCs enhances the therapeutic potential of engineered exosomes, offering promising prospects for application by enabling controlled and quantifiable external stimulation. This study aims to address these issues by employing pro-inflammatory preconditioning of MSCs to enhance exosome production and augment their therapeutic efficacy for OA. METHODS: The exosomes were isolated from the supernatant of infrapatellar fat pad (IPFP)-MSCs preconditioned with a pro-inflammatory factor, TNF-α, and their production was subsequently quantified. The exosome secretion-related pathways in IPFP-MSCs were evaluated through high-throughput transcriptome sequencing analysis, q-PCR and western blot analysis before and after TNF-α preconditioning. Furthermore, exosomes derived from TNF-α preconditioned IPFP-MSCs (IPFP-MSC-EXOsTNF-α) were administered intra-articularly in an OA mouse model, and subsequent evaluations were conducted to assess joint pathology and gait alterations. The expression of proteins involved in the maintenance of cartilage homeostasis within the exosomes was determined through proteomic analysis. RESULTS: The preconditioning with TNF-α significantly enhanced the exosome secretion of IPFP-MSCs compared to unpreconditioned MSCs. The potential mechanism involved the activation of the PI3K/AKT signaling pathway in IPFP-MSCs by TNF-α precondition, leading to an up-regulation of autophagy-related protein 16 like 1(ATG16L1) levels, which subsequently facilitated exosome secretion. The intra-articular administration of IPFP-MSC-EXOsTNF-α demonstrated superior efficacy in ameliorating pathological changes in the joints of OA mice. The preconditioning of TNF-α enhanced the up-regulation of low-density lipoprotein receptor-related protein 1 (LRP1) levels in IPFP-MSC-EXOsTNF-α, thereby exerting chondroprotective effects. CONCLUSION: TNF-α preconditioning constitutes an effective and promising method for optimizing the therapeutic effects of IPFP-MSCs derived exosomes in the treatment of OA.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Osteoartrite , Fator de Necrose Tumoral alfa , Exossomos/metabolismo , Animais , Células-Tronco Mesenquimais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Camundongos , Osteoartrite/terapia , Osteoartrite/metabolismo , Tecido Adiposo/citologia , Camundongos Endogâmicos C57BL , Masculino , Modelos Animais de Doenças , Cartilagem Articular/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células Cultivadas , Humanos
3.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885704

RESUMO

The chlorophyll ethanol-extracted silkworm excrement was hardly biologically reused or fermented by most microorganisms. However, partial extremely environmental halophiles were reported to be able to utilize a variety of inexpensive carbon sources to accumulate polyhydroxyalkanoates. In this study, by using the nile red staining and gas chromatography assays, two endogenous haloarchaea strains: Haloarcula hispanica A85 and Natrinema altunense A112 of silkworm excrement were shown to accumulate poly(3-hydroxybutyrate) up to 0.23 g/L and 0.08 g/L, respectively, when using the silkworm excrement as the sole carbon source. The PHA production of two haloarchaea showed no significant decreases in the silkworm excrement medium without being sterilized compared to that of the sterilized medium. Meanwhile, the CFU experiments revealed that there were more than 60% target PHAs producing haloarchaea cells at the time of the highest PHAs production, and the addition of 0.5% glucose into the open fermentation medium can largely increase both the ratio of target haloarchaea cells (to nearly 100%) and the production of PHAs. In conclusion, our study demonstrated the feasibility of using endogenous haloarchaea to utilize waste silkworm excrement, effectively. The introduce of halophiles could provide a potential way for open fermentation to further lower the cost of the production of PHAs.


Assuntos
Haloarcula/metabolismo , Halobacteriaceae/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Resíduos Sólidos , Ácido 3-Hidroxibutírico/metabolismo , Animais , Bombyx/química , Bombyx/metabolismo , Carbono/metabolismo , Meios de Cultura , Glucose/metabolismo , Haloarcula/química , Halobacteriaceae/química , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/química , Cloreto de Sódio/química
4.
Mol Cancer ; 19(1): 56, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164722

RESUMO

BACKGROUND: Aberrant expression of circular RNAs contributes to the initiation and progression of cancers, but the underlying mechanism remains elusive. METHODS: RNA-seq and qRT-PCR were performed to screen differential expressed circRNAs between gastric cancer tissues and adjacent normal tissues. Candidate circRNA (circMRPS35) was screened out and validated by qRT-PCR. Cell proliferation and invasion ability were determined by CCK-8 and cell invasion assays. RNA-seq, GO-pathway, RNA pull-down and ChIRP were further applied to search for detailed mechanism. RESULTS: Here, a novel circRNA named circMRPS35, was screened out by RNA-seq in gastric cancer tissues, whose expression is related to clinicopathological characteristics and prognosis in gastric cancer patients. Biologically, circMRPS35 suppresses the proliferation and invasion of gastric cancer cells in vitro and in vivo. Mechanistically, circMRPS35 acts as a modular scaffold to recruit histone acetyltransferase KAT7 to the promoters of FOXO1 and FOXO3a genes, which elicits acetylation of H4K5 in their promoters. Particularly, circMRPS35 specifically binds to FOXO1/3a promoter regions directly. Thus, it dramatically activates the transcription of FOXO1/3a and triggers subsequent response of their downstream target genes expression, including p21, p27, Twist1 and E-cadherin, resulting in the inhibition of cell proliferation and invasion. Moreover, circMRPS35 expression positively correlates with that of FOXO1/3a in gastric cancer tissues. CONCLUSIONS: Our findings not only reveal the pivotal roles of circMRPS35 in governing histone modification in anticancer treatment, but also advocate for triggering circMRPS35/KAT7/FOXO1/3a pathway to combat gastric cancer.


Assuntos
Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/metabolismo , Regulação Neoplásica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Histonas/química , RNA Circular/genética , Neoplasias Gástricas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Progressão da Doença , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/genética , Histona Acetiltransferases/genética , Humanos , Camundongos , Camundongos Nus , Prognóstico , Processamento de Proteína Pós-Traducional , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell Commun Signal ; 17(1): 63, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186051

RESUMO

Human telomerase reverse transcriptase (hTERT) is the core subunit of human telomerase and plays important roles in human cancers. Aberrant expression of hTERT is closely associated with tumorigenesis, cancer cell stemness maintaining, cell proliferation, apoptosis inhibition, senescence evasion and metastasis. The molecular basis of hTERT regulation is highly complicated and consists of various layers. A deep and full-scale comprehension of the regulatory mechanisms of hTERT is pivotal in understanding the pathogenesis and searching for therapeutic approaches. In this review, we summarize the recent advances regarding the diverse regulatory mechanisms of hTERT, including the transcriptional (promoter mutation, promoter region methylation and histone acetylation), post-transcriptional (mRNA alternative splicing and non-coding RNAs) and post-translational levels (phosphorylation and ubiquitination), which may provide novel perspectives for further translational diagnosis or therapeutic strategies targeting hTERT.


Assuntos
Telomerase/metabolismo , Humanos , Mutação , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional , Telomerase/genética
6.
Exp Cell Res ; 328(2): 379-87, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25196280

RESUMO

Natural BH3-memitic (-)-gossypol shows promising antitumor efficacy in several kinds of cancer. However, our previous studies have demonstrated that protective autophagy decreases the drug sensitivities of Bcl-2 inhibitors in hepatocellular carcinoma (HCC) cells. In the present study, we are the first to report that Hsp90 inhibitor 17-AAG enhanced (-)-gossypol-induced apoptosis via suppressing (-)-gossypol-triggered protective autophagy and Mcl-1 accumulation. The suppression effect of 17-AAG on autophagy was mediated by inhibiting ERK-mediated Bcl-2 phosphorylation while was not related to Beclin1 or LC3 protein instability. Meanwhile, 17-AAG downregulated (-)-gossypol-triggered Mcl-1 accumulation by suppressing Mcl-1(Thr163) phosphorylation and promoting protein degradation. Collectively, our study indicates that Hsp90 plays an important role in tumor maintenance and inhibition of Hsp90 may become a new strategy for sensitizing Bcl-2-targeted chemotherapies in HCC cells.


Assuntos
Autofagia/efeitos dos fármacos , Benzoquinonas/farmacologia , Carcinoma Hepatocelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Gossipol/farmacologia , Lactamas Macrocíclicas/farmacologia , Neoplasias Hepáticas/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Células Hep G2 , Humanos , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
7.
Cell Stress ; 8: 56-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803355

RESUMO

Anoikis is a common programmed death for most of detached cells, but cancer cells can obtain anoikis resistance to facilitate their distant metastasis through the circulation system. Researches have indicated that enhanced autophagic flux accounts for the survival of many cancer cells under detached conditions. Targeting ATG4B, the key factor of autophagy progress, can inhibit cancer metastasis in vitro, but ATG4B-deficient mice are susceptible to many serious diseases, which indicates the potential uncontrolled side effects of direct targeting of ATG4B. In our recent research, we confirmed that ATG4B is a novel RNA binding protein in the gastric cancer (GC) cell. It interacts with circSPECC1 which consequently facilitates the liquid-liquid phase separation and ubiquitination of ATG4B. Additionally, the m6A reader ELAVL1 inhibits the expression of circSPECC1 to enhance the expression of ATG4B and anoikis resistance of GC cells. Further, we screened out an FDA-approved compound, lopinavir, to restore circSPECC1 abundance and suppress GC metastasis. In conclusion, our research identified a novel signal pathway (ELAVL1-circSPECC1-ATG4B-autophagy) to facilitate anoikis resistance and metastasis of GC cells and screened out a compound with clinical application potential to block this pathway, providing a novel strategy for the prevention of GC metastasis.

8.
J Orthop Translat ; 48: 53-69, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39170747

RESUMO

Joint diseases greatly impact the daily lives and occupational functioning of patients globally. However, conventional treatments for joint diseases have several limitations, such as unsatisfatory efficacy and side effects, necessitating the exploration of more efficacious therapeutic strategies. Mesenchymal stem cell (MSC)-derived EVs (MSC-EVs) have demonstrated high therapeutic efficacyin tissue repair and regeneration, with low immunogenicity and tumorigenicity. Recent studies have reported that EVs-based therapy has considerable therapeutic effects against joint diseases, including osteoarthritis, tendon and ligament injuries, femoral head osteonecrosis, and rheumatoid arthritis. Herein, we review the therapeutic potential of various types of MSC-EVs in the aforementioned joint diseases, summarise the mechanisms underlying specific biological effects of MSC-EVs, and discuss future prospects for basic research on MSC-EV-based therapeutic modalities and their clinical translation. In general, this review provides an in-depth understanding of the therapeutic effects of MSC-EVs in joint diseases, as well as the underlying mechanisms, which may be beneficial to the clinical translation of MSC-EV-based treatment. The translational potential of this article: MSC-EV-based cell-free therapy can effectively promote regeneration and tissue repair. When used to treat joint diseases, MSC-EVs have demonstrated desirable therapeutic effects in preclinical research. This review may supplement further research on MSC-EV-based treatment of joint diseases and its clinical translation.

9.
Chin Med ; 19(1): 25, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360724

RESUMO

Osteoarthritis (OA) is the most prevalent degenerative musculoskeletal disease, severely impacting the function of patients and potentially leading to disability, especially among the elderly population. Natural products (NPs), obtained from components or metabolites of plants, animals, microorganisms etc., have gained significant attention as important conservative treatments for various diseases. Recently, NPs have been well studied in preclinical and clinical researches, showing promising potential in the treatment of OA. In this review, we summed up the main signaling pathways affected by NPs in OA treatment, including NF-κB, MAPKs, PI3K/AKT, SIRT1, and other pathways, which are related to inflammation, anabolism and catabolism, and cell death. In addition, we described the therapeutic effects of NPs in different OA animal models and the current clinical studies in OA patients. At last, we discussed the potential research directions including in-depth analysis of the mechanisms and new application strategies of NPs for the OA treatment, so as to promote the basic research and clinical transformation in the future. We hope that this review may allow us to get a better understanding about the potential bioeffects and mechanisms of NPs in OA therapy, and ultimately improve the effectiveness of NPs-based clinical conservative treatment for OA patients.

10.
Autophagy ; 20(7): 1651-1672, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38433354

RESUMO

Macroautophagy/autophagy-mediated anoikis resistance is crucial for tumor metastasis. As a key autophagy-related protein, ATG4B has been demonstrated to be a prospective anti-tumor target. However, the existing ATG4B inhibitors are still far from clinical application, especially for tumor metastasis. In this study, we identified a novel circRNA, circSPECC1, that interacted with ATG4B. CircSPECC1 facilitated liquid-liquid phase separation of ATG4B, which boosted the ubiquitination and degradation of ATG4B in gastric cancer (GC) cells. Thus, pharmacological addition of circSPECC1 may serve as an innovative approach to suppress autophagy by targeting ATG4B. Specifically, the circSPECC1 underwent significant m6A modification in GC cells and was subsequently recognized and suppressed by the m6A reader protein ELAVL1/HuR. The activation of the ELAVL1-circSPECC1-ATG4B pathway was demonstrated to mediate anoikis resistance in GC cells. Moreover, we also verified that the above pathway was closely related to metastasis in tissues from GC patients. Furthermore, we determined that the FDA-approved compound lopinavir efficiently enhanced anoikis and prevented metastasis by eliminating repression of ELAVL1 on circSPECC1. In summary, this study provides novel insights into ATG4B-mediated autophagy and introduces a viable clinical inhibitor of autophagy, which may be beneficial for the treatment of GC with metastasis.


Assuntos
Anoikis , Autofagia , Cisteína Endopeptidases , Lopinavir , RNA Circular , Anoikis/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Humanos , RNA Circular/metabolismo , RNA Circular/genética , Linhagem Celular Tumoral , Cisteína Endopeptidases/metabolismo , Lopinavir/farmacologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Proteínas Relacionadas à Autofagia/metabolismo , Animais , Camundongos , Ubiquitinação/efeitos dos fármacos
11.
Adv Sci (Weinh) ; 11(7): e2306143, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38083984

RESUMO

Macrophages are heterogenic phagocytic cells that play distinct roles in physiological and pathological processes. Targeting different types of macrophages has shown potent therapeutic effects in many diseases. Although many approaches are developed to target anti-inflammatory macrophages, there are few researches on targeting pro-inflammatory macrophages, which is partially attributed to their non-s pecificity phagocytosis of extracellular substances. In this study, a novel recombinant protein is constructed that can be anchored on an exosome membrane with the purpose of targeting pro-inflammatory macrophages via antigen recognition, which is named AnCar-ExoLaIMTS . The data indicate that the phagocytosis efficiencies of pro-inflammatory macrophages for different AnCar-ExoLaIMTS show obvious differences. The AnCar-ExoLaIMTS3 has the best targeting ability for pro-inflammatory macrophages in vitro and in vivo. Mechanically, AnCar-ExoLaIMTS3 can specifically recognize the leucine-rich repeat domain of the TLR4 receptor, and then enter into pro-inflammatory macrophages via the TLR4-mediated receptor endocytosis pathway. Moreover, AnCar-ExoLaIMTS3 can efficiently deliver therapeutic cargo to pro-inflammatory macrophages and inhibit the synovial inflammatory response via downregulation of HIF-1α level, thus ameliorating the severity of arthritis in vivo. Collectively, the work established a novel gene/drug delivery system that can specifically target pro-inflammatory macrophages, which may be beneficial for the treatments of arthritis and other inflammatory diseases.


Assuntos
Artrite , Macrófagos , Humanos , Macrófagos/metabolismo , Artrite/tratamento farmacológico , Fagocitose , Anti-Inflamatórios/uso terapêutico , Comunicação Celular
12.
Signal Transduct Target Ther ; 8(1): 341, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37691066

RESUMO

CircRNAs are a class of single-stranded RNAs with covalently linked head-to-tail topology. In the decades since its initial discovery, their biogenesis, regulation, and function have rapidly disclosed, permitting a better understanding and adoption of them as new tools for medical applications. With the development of biotechnology and molecular medicine, artificial circRNAs have been engineered as a novel class of vaccines for disease treatment and prevention. Unlike the linear mRNA vaccine which applications were limited by its instability, inefficiency, and innate immunogenicity, circRNA vaccine which incorporate internal ribosome entry sites (IRESs) and open reading frame (ORF) provides an improved approach to RNA-based vaccination with safety, stability, simplicity of manufacture, and scalability. However, circRNA vaccines are at an early stage, and their optimization, delivery and applications require further development and evaluation. In this review, we comprehensively describe circRNA vaccine, including their history and superiority. We also summarize and discuss the current methodological research for circRNA vaccine preparation, including their design, synthesis, and purification. Finally, we highlight the delivery options of circRNA vaccine and its potential applications in diseases treatment and prevention. Considering their unique high stability, low immunogenicity, protein/peptide-coding capacity and special closed-loop construction, circRNA vaccine, and circRNA-based therapeutic platforms may have superior application prospects in a broad range of diseases.


Assuntos
RNA Circular , RNA , RNA Circular/genética , RNA/genética , Vacinação
13.
Cartilage ; : 19476035231205690, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37846064

RESUMO

OBJECTIVE: Extrachromosomal circular DNA (eccDNA) has been shown to be involved in several physiological and pathological processes including immunity, inflammation, aging, and tumor. However, the expression of eccDNA in cartilage has not been reported until now. In this study, we aimed to investigate the landscape of eccDNA in articular cartilage and analyze the potential roles in osteoarthritis (OA). METHODS: The samples of articular cartilage were obtained from total knee arthroplasty (TKA) donors with OA. The mitochondrial DNA (mtDNAs) and the linear DNAs from chondrocytes of articular cartilage were removed. Then the eccDNAs were enriched for cir-DNA sequencing. After quality control evaluation, we systematically revealed the identified eccDNA data including size distribution, the size range, and sequence pattern. Moreover, we explored and discussed the potential roles of eccDNA in OA via motif analysis and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. RESULTS: The chondrocytes from OA cartilage contained an abundance of eccDNAs, which was termed as OC-eccDNAs (OA cartilage-derived eccDNA). The characteristics of OC-eccDNAs were tissue-specific, including the distribution, the size range, and sequence pattern. Moreover, the functional analysis indicated that eccDNA may be involved in the homeostasis maintenance of chondrocytes and participated in the process of OA. CONCLUSIONS: Our data first showed the landscape of eccDNA in articular cartilage and preliminarily indicated the potential roles of eccDNA in OA.

14.
Burns Trauma ; 11: tkac060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733467

RESUMO

Autophagy, as a fundamental mechanism for cellular homeostasis, is generally involved in the occurrence and progression of various diseases. Osteoarthritis (OA) is the most common musculoskeletal disease that often leads to pain, disability and economic loss in patients. Post-traumatic OA (PTOA) is a subtype of OA, accounting for >12% of the overall burden of OA. PTOA is often caused by joint injuries including anterior cruciate ligament rupture, meniscus tear and intra-articular fracture. Although a variety of methods have been developed to treat acute joint injury, the current measures have limited success in effectively reducing the incidence and delaying the progression of PTOA. Therefore, the pathogenesis and intervention strategy of PTOA need further study. In the past decade, the roles and mechanisms of autophagy in PTOA have aroused great interest in the field. It was revealed that autophagy could maintain the homeostasis of chondrocytes, reduce joint inflammatory level, prevent chondrocyte death and matrix degradation, which accordingly improved joint symptoms and delayed the progression of PTOA. Moreover, many strategies that target PTOA have been revealed to promote autophagy. In this review,  we summarize the roles and mechanisms of autophagy in PTOA and the current strategies for PTOA treatment that depend on autophagy regulation, which may be beneficial for PTOA patients in the future.

15.
J Clin Invest ; 133(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37847562

RESUMO

Tumor burden, considered a common chronic stressor, can cause widespread anxiety. Evidence suggests that cancer-induced anxiety can promote tumor progression, but the underlying neural mechanism remains unclear. Here, we used neuroscience and cancer tools to investigate how the brain contributes to tumor progression via nerve-tumor crosstalk in a mouse model of breast cancer. We show that tumor-bearing mice exhibited significant anxiety-like behaviors and that corticotropin-releasing hormone (CRH) neurons in the central medial amygdala (CeM) were activated. Moreover, we detected newly formed sympathetic nerves in tumors, which established a polysynaptic connection to the brain. Pharmacogenetic or optogenetic inhibition of CeMCRH neurons and the CeMCRH→lateral paragigantocellular nucleus (LPGi) circuit significantly alleviated anxiety-like behaviors and slowed tumor growth. Conversely, artificial activation of CeMCRH neurons and the CeMCRH→LPGi circuit increased anxiety and tumor growth. Importantly, we found alprazolam, an antianxiety drug, to be a promising agent for slowing tumor progression. Furthermore, we show that manipulation of the CeMCRH→LPGi circuit directly regulated the activity of the intratumoral sympathetic nerves and peripheral nerve-derived norepinephrine, which affected tumor progression by modulating antitumor immunity. Together, these findings reveal a brain-tumor neural circuit that contributes to breast cancer progression and provide therapeutic insights for breast cancer.


Assuntos
Hormônio Liberador da Corticotropina , Neoplasias , Camundongos , Animais , Hormônio Liberador da Corticotropina/metabolismo , Neurônios/metabolismo , Ansiedade , Encéfalo/metabolismo
16.
Chem Biol Interact ; 364: 110060, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35872041

RESUMO

Epirubicin (EPI)-based transarterial chemoembolization is an effective therapy for advanced hepatocellular carcinoma (HCC). However, EPI-induced survivin expression limits its tumor-killing potential in HCC. Interestingly, (-)-gossypol ((-)-Gsp), a male contraceptive, suppresses various malignancies. More importantly, (-)-Gsp also holds promise for enhancing the antitumor effects of chemotherapy in numerous cancer types. In the present study, we demonstrated for the first time that (-)-Gsp-sensitized EPI inhibited cell growth and induced apoptosis of HCC cells in vitro. Furthermore, (-)-Gsp sensitized EPI by attenuating the EPI-elevated survivin protein levels. Mechanistic studies showed that EPI stimulated survivin protein synthesis by promoting translation initiation, which was alleviated by (-)-Gsp mainly through suppressing the AKT-4EBP1/p70S6K-survivin and ERK-4EBP1-survivin pathways. HCC xenograft experiments in nude mice also showed that (-)-Gsp treatment acted synergistically with EPI to repress xenograft tumor growth. Overall, our proof-of-concept results may pave the way for novel strategies for the treatment of HCC based on the combination of EPI and (-)-Gsp.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Gossipol , Neoplasias Hepáticas , Animais , Apoptose , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Epirubicina/farmacologia , Epirubicina/uso terapêutico , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Nus , Survivina , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Front Microbiol ; 13: 981605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060764

RESUMO

Silkworm excrement is hard to be degraded or bio-utilized by environmental microorganisms due to its high content of heavy metals and antimicrobial biomacromolecules in mulberry leaves. In traditional Chinese silk industry, the silkworm excrement results in environmental problems. In this study, the silkworm excrement after chlorophyll ethanol-extraction was researched. An open fermentation strategy was developed using the silkworm excrement as the sole or partial carbon source by haloarchaea to accumulate polyhydroxyalkanoates. As a haloarchaeon with strong carbon source utilization ability, Haloferax mediterranei was found to accumulate a certain amount of poly(3-hydroxybutyrate-co-3-hydroxyvalerate; PHBV) using waste silkworm excrement. The results showed that the addition of silkworm excrement into glucose based fermentation medium can significantly improve the production of PHBV. Using a mixture carbon source including the extract of silkworm excrement and glucose (with a 1:1 carbon content ratio), the yield of PHBV was 1.73 ± 0.12 g/l, which showed a 26% increase than that of fermentation without the silkworm excrement addition. When the NaCl content of medium was set to approximately 15%, fermentation without sterilization was performed using silkworm excrement as the carbon source. Moreover, the addition of the silkworm excrement extract could increase the 3-hydroxyvalerate (3 HV) content of PHBV regardless of the sterilization or non-sterilization fermentation conditions. When using silkworm excrement as the sole carbon source, the 3 HV content was as high as 16.37 ± 0.54 mol %. The real-time quantitative PCR results showed that the addition of the silkworm excrement could specifically enhance the expression of genes involved in the aspartate/2-ketobutyric acid pathway related to 3 HV synthesis in H. mediterranei, and further analysis of the amino acid of the silkworm excrement suggested that the high content of threonine in the silkworm excrement might be the reason for the increase of 3 HV content. Taken together, the success of non-sterile fermentation in hypersaline condition using haloarchaea implied a novel way to reuse the silkworm excrement, which not only reduces the production costs of PHBV, but also is conducive to environmental protection.

18.
Front Aging Neurosci ; 14: 857415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35493946

RESUMO

Neurons, glial cells and blood vessels are collectively referred to as the neurovascular unit (NVU). In the Alzheimer's disease (AD) brain, the main components of the NVU undergo pathological changes. Transcranial direct current stimulation (tDCS) can protect neurons, induce changes in glial cells, regulate cerebral blood flow, and exert long-term neuroprotection. However, the mechanism by which tDCS improves NVU function is unclear. In this study, we explored the effect of tDCS on the NVU in mice with preclinical AD and the related mechanisms. 10 sessions of tDCS were given to six-month-old male APP/PS1 mice in the preclinical stage. The model group, sham stimulation group, and control group were made up of APP/PS1 mice and C57 mice of the same age. All mice were histologically evaluated two months after receiving tDCS. Protein content was measured using Western blotting and an enzyme-linked immunosorbent assay (ELISA). The link between glial cells and blood vessels was studied using immunofluorescence staining and lectin staining. The results showed that tDCS affected the metabolism of Aß; the levels of Aß, amyloid precursor protein (APP) and BACE1 were significantly reduced, and the levels of ADAM10 were significantly increased in the frontal cortex and hippocampus in the stimulation group. In the stimulation group, tDCS reduced the protein levels of Iba1 and GFAP and increased the protein levels of NeuN, LRP1 and PDGRFß. This suggests that tDCS can improve NVU function in APP/PS1 mice in the preclinical stage. Increased blood vessel density and blood vessel length, decreased IgG extravasation, and increased the protein levels of occludin and coverage of astrocyte foot processes with blood vessels suggested that tDCS had a protective effect on the blood-brain barrier. Furthermore, the increased numbers of Vimentin, S100 expression and blood vessels (lectin-positive) around Aß indicated that the effect of tDCS was mediated by astrocytes and blood vessels. There was no significant difference in these parameters between the model group and the sham stimulation group. In conclusion, our results show that tDCS can improve NVU function in APP/PS1 mice in the preclinical stage, providing further support for the use of tDCS as a treatment for AD.

19.
Sci Adv ; 8(31): eabo0412, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35921421

RESUMO

Eukaryotes initiate autophagy when facing environmental changes such as a lack of external nutrients. However, the mechanisms of autophagy initiation are still not fully elucidated. Here, we showed that deacetylation of ATG4B plays a key role in starvation-induced autophagy initiation. Specifically, we demonstrated that ATG4B is activated during starvation through deacetylation at K39 by the deacetylase SIRT2. Moreover, starvation triggers SIRT2 dephosphorylation and activation in a cyclin E/CDK2 suppression-dependent manner. Meanwhile, starvation down-regulates p300, leading to a decrease in ATG4B acetylation at K39. K39 deacetylation also enhances the interaction of ATG4B with pro-LC3, which promotes LC3-II formation. Furthermore, an in vivo experiment using Sirt2 knockout mice also confirmed that SIRT2-mediated ATG4B deacetylation at K39 promotes starvation-induced autophagy initiation. In summary, this study reveals an acetylation-dependent regulatory mechanism that controls the role of ATG4B in autophagy initiation in response to nutritional deficiency.

20.
Cell Death Dis ; 11(7): 559, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703934

RESUMO

Gastric cancer is one of the most common cancer and is the second leading cause of cancer-related mortality in the world. PIN1, belonging to peptidyl-prolyl cis-trans isomerase family, uniquely catalyzes the structural transformation of phosphorylated Ser/Thr-Pro motif. It's high expressed in most cancers and promotes their progression. However, the mechanism of PIN1 high expression and its function in gastric cancer progression are still unclear. In this research, we revealed that PIN1 not only promotes the proliferation and colony formation of gastric cancer, but also increases its migration and invasion. The PIN1 expression in metastasis lesion is usually higher than the corresponding primary site. Inhibiting PIN1 by shRNA suppresses the progression of gastric cancer significantly. Besides, we demonstrated that miR-628-5p is a novel PIN1-targeted microRNA, and the expression of miR-628-5p is negatively correlated with PIN1 in gastric cancer. Exogenous expression of miR-628-5p inhibits the progression of gastric cancer that revered by restoring PIN1 expression. However, miR-628-5p is downregulated in majority of gastric cancer tissue especially in metastasis lesion. The lower miR-628-5p level indicates poorer prognosis. In summary, our study demonstrated that deficient miR-628-5p expression facilitates the expression of PIN1, and consequently promotes the progression of gastric cancer.


Assuntos
Progressão da Doença , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Regulação para Cima/genética , Regiões 3' não Traduzidas/genética , Sequência de Bases , Linhagem Celular Tumoral , Regulação para Baixo/genética , Humanos , MicroRNAs/genética , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Metástase Neoplásica , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa