Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Appl Mech ; 91(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38449742

RESUMO

Natural protective materials offer unparalleled solutions for impact-resistant material designs that are simultaneously lightweight, strong, and tough. Particularly, the Bouligand structure found in the dactyl club of mantis shrimp and the staggered structure in nacre achieve excellent mechanical strength, toughness, and impact resistance. Previous studies have shown that hybrid designs by combining different bioinspired microstructures can lead to enhanced mechanical strength and energy dissipation. Nevertheless, it remains unknown whether combining Bouligand and staggered structures in nanofibrillar cellulose (NFC) films, forming a discontinuous fibrous Bouligand (DFB) architecture, can achieve enhanced impact resistance against projectile penetration. Additionally, the failure mechanisms under such dynamic loading conditions have been minimally understood. In our study, we systematically investigate the dynamic failure mechanisms and quantify the impact resistance of NFC thin films with DFB architecture by leveraging previously developed coarse-grained models and ballistic impact molecular dynamics simulations. We find that when nanofibrils achieve a critical length and form DFB architecture, the impact resistance of NFC films outperforms the counterpart films with continuous fibrils by comparing their specific ballistic limit velocities and penetration energies. We also find that the underlying mechanisms contributing to this improvement include enhanced fibril sliding, intralayer and interlayer crack bridging, and crack twisting in the thickness direction enabled by the DFB architecture. Our results show that by combining Bouligand and staggered structures in NFC films, their potential for protective applications can be further improved. Our findings can provide practical guidelines for the design of protective films made of nanofibrils.

2.
J Biomech Eng ; 145(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752723

RESUMO

The cartilage endplates (CEPs) on the superior and inferior surfaces of the intervertebral disk (IVD), are the primary nutrient transport pathways between the disk and the vertebral body. Passive diffusion is responsible for transporting small nutrient and metabolite molecules through the avascular CEPs. The baseline solute diffusivities in healthy CEPs have been previously studied, however alterations in CEP diffusion associated with IVD degeneration remain unclear. This study aimed to quantitatively compare the solute diffusion in healthy and degenerated human CEPs using a fluorescence recovery after photobleaching (FRAP) approach. Seven healthy CEPs and 22 degenerated CEPs were collected from five fresh-frozen human cadaveric spines and 17 patients undergoing spine fusion surgery, respectively. The sodium fluorescein diffusivities in CEP radial and vertical directions were measured using the FRAP method. The CEP calcification level was evaluated by measuring the average X-ray attenuation. No difference was found in solute diffusivities between radial and axial directions in healthy and degenerated CEPs. Compared to healthy CEPs, the average solute diffusivity was 44% lower in degenerated CEPs (Healthy: 29.07 µm2/s (CI: 23.96-33.62 µm2/s); degenerated: 16.32 µm2/s (CI: 13.84-18.84 µm2/s), p < 0.001). The average solute diffusivity had an inverse relationship with the degree of CEP calcification as determined by the normalized X-ray attenuation values (ß = -22.19, R2 = 0.633; p < 0.001). This study suggests that solute diffusion through the disk and vertebral body interface is significantly hindered by CEP calcification, providing clues to help further understand the mechanism of IVD degeneration.


Assuntos
Calcinose , Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Cartilagem/metabolismo , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Transporte Biológico , Difusão
3.
Stem Cells ; 39(11): 1457-1477, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34224636

RESUMO

Currently, there is no cure for osteogenesis imperfecta (OI)-a debilitating pediatric skeletal dysplasia. Herein we show that hematopoietic stem cell (HSC) therapy holds promise in treating OI. Using single-cell HSC transplantation in lethally irradiated oim/oim mice, we demonstrate significant improvements in bone morphometric, mechanics, and turnover parameters. Importantly, we highlight that HSCs cause these improvements due to their unique property of differentiating into osteoblasts/osteocytes, depositing normal collagen-an attribute thus far assigned only to mesenchymal stem/stromal cells. To confirm HSC plasticity, lineage tracing was done by transplanting oim/oim with HSCs from two specific transgenic mice-VavR, in which all hematopoietic cells are GFP+ and pOBCol2.3GFP, where GFP is expressed only in osteoblasts/osteocytes. In both models, transplanted oim/oim mice demonstrated GFP+ HSC-derived osteoblasts/osteocytes in bones. These studies unequivocally establish that HSCs differentiate into osteoblasts/osteocytes, and HSC transplantation can provide a new translational approach for OI.


Assuntos
Osteogênese Imperfeita , Animais , Modelos Animais de Doenças , Células-Tronco Hematopoéticas , Humanos , Camundongos , Camundongos Transgênicos , Osteoblastos , Osteogênese , Osteogênese Imperfeita/terapia
4.
Clin Orthop Relat Res ; 476(10): 2076-2090, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30024459

RESUMO

BACKGROUND: External beam irradiation is an accepted treatment for skeletal malignancies. Radiation acts on both cancerous and normal cells and, depending on the balance of these effects, may promote or impair bone healing after pathologic fracture. Previous studies suggest an adverse effect of radiation on endochondral ossification, but the existence of differential effects of radiation on the two distinct bone healing pathways is unknown. QUESTIONS/PURPOSES: The purpose of this study was to investigate the differential effects of external beam irradiation on endochondral compared with intramembranous ossification with intramedullary nail and plate fixation of fractures inducing the two respective osseous healing pathways through assessment of (1) bone biology by histomorphometric analysis of cartilage area and micro-CT volumetric assessment of the calcified callus; and (2) mechanical properties of the healing fracture by four-point bending failure analysis of bending stiffness and strength. METHODS: Thirty-six male Sprague-Dawley rats underwent bilateral iatrogenic femur fracture: one side was repaired with an intramedullary nail and the other with compression plating. Three days postoperatively, half (n = 18) received 8-Gray external beam irradiation to each fracture. Rodents were euthanized at 1, 2, and 4 weeks postoperatively (n = 3/group) for quantitative histomorphometry of cartilage area and micro-CT assessment of callus volume. The remaining rodents were euthanized at 3 months (n = 9/group) and subjected to four-point bending tests to assess stiffness and maximum strength. RESULTS: Nailed femurs that were irradiated exhibited a reduction in cartilage area at both 2 weeks (1.08 ± 1.13 mm versus 37.32 ± 19.88 mm; 95% confidence interval [CI] of the difference, 4.32-68.16 mm; p = 0.034) and 4 weeks (4.60 ± 3.97 mm versus 39.10 ± 16.28 mm; 95% CI of the difference, 7.64-61.36 mm; p = 0.023) compared with nonirradiated fractures. There was also a decrease in the volume ratio of calcified callus at 4 weeks (0.35 ± 0.08 versus 0.51 ± 0.05; 95% CI of the difference, 0.01-0.31; p = 0.042) compared with nonirradiated fractures. By contrast, there was no difference in cartilage area or calcified callus between irradiated and nonirradiated plated femurs. The stiffness (128.84 ± 76.60 N/mm versus 26.99 ± 26.07 N/mm; 95% CI of the difference, 44.67-159.03 N/mm; p = 0.012) and maximum strength (41.44 ± 22.06 N versus 23.75 ± 11.00 N; 95% CI of the difference, 0.27-35.11 N; p = 0.047) of irradiated plated femurs was greater than the irradiated nailed femurs. However, for nonirradiated femurs, the maximum strength of nailed fractures (36.05 ± 17.34 N versus 15.63 ± 5.19 N; 95% CI of the difference, 3.96-36.88 N; p = 0.022) was greater than plated fractures, and there was no difference in stiffness between the nailed and plated fractures. CONCLUSIONS: In this model, external beam irradiation was found to preferentially inhibit endochondral over intramembranous ossification with the greatest impairment in healing of radiated fractures repaired with intramedullary nails compared with those fixed with plates. Future work with larger sample sizes might focus on further elucidating the observed differences in mechanical properties. CLINICAL RELEVANCE: This work suggests that there may be a rationale for compression plating rather than intramedullary nailing of long bone fractures in select circumstances where bony union is desirable, adjunctive radiation treatment is required, and bone stock is sufficient for plate and screw fixation.


Assuntos
Fraturas do Fêmur/terapia , Fêmur/efeitos da radiação , Fêmur/cirurgia , Consolidação da Fratura/efeitos da radiação , Osteogênese/efeitos da radiação , Doses de Radiação , Animais , Pinos Ortopédicos , Placas Ósseas , Terapia Combinada , Modelos Animais de Doenças , Fraturas do Fêmur/diagnóstico por imagem , Fraturas do Fêmur/fisiopatologia , Fêmur/diagnóstico por imagem , Fêmur/fisiopatologia , Fixação Intramedular de Fraturas/instrumentação , Masculino , Ratos Sprague-Dawley , Fatores de Tempo , Microtomografia por Raio-X
5.
Crit Rev Biomed Eng ; 42(3-4): 229-48, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25597238

RESUMO

Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet-A (UVA) light has become a viable treatment for keratoconus. In cases in which corneal transplant may have previously been a patient's primary treatment option, the results of CXL have varied from decreased progression of the disease to marked regression characterized by improvement in visual acuity. In addition, changes to the original protocol have been tested that include leaving the epithelium intact and increasing the UVA intensity while decreasing the exposure time. The variation in results and protocols underscores the need for a greater understanding of the procedure and its effects. Ideally, a complete definition of the effects of CXL will lead to patient-specific treatment through highly controlled delivery methods of riboflavin and UVA light and complete mathematical models for predicting the final shape and refractive effect of the cornea. Thus, in this review, we aimed to describe the current techniques for measuring the effect of CXL, with a focus on material property changes, while highlighting the challenge of engineering a predictable mathematical model of the procedure and the resulting clinical outcome.


Assuntos
Córnea , Ceratocone/terapia , Modelos Biológicos , Animais , Colágeno/química , Colágeno/metabolismo , Córnea/química , Córnea/fisiopatologia , Córnea/efeitos da radiação , Humanos , Riboflavina/química , Riboflavina/metabolismo , Terapia Ultravioleta
6.
J Biomed Mater Res A ; 112(3): 421-435, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37964720

RESUMO

Focal chondral defects (FCDs) significantly impede quality of life for patients and impose severe economic costs on society. One of the most promising treatment options-autologous matrix-induced chondrogenesis (AMIC)-could benefit from a scaffold that contains both of the primary cartilage matrix components-sulfated glycosaminoglycans (sGAGs) and collagen type II. Here, 17 different protocols were evaluated to determine the most optimum strategy for decellularizing (decelling) the bovine nucleus pulposus (bNP) to yield a natural biomaterial with a cartilaginous constituency. The resulting scaffold was then characterized with respect to its biochemistry, biomechanics and cytocompatibility. Results indicated that the optimal decell protocol involved pre-crosslinking the tissue prior to undergoing decell with trypsin and Triton X-100. The residual DNA content of the scaffold was found to be 32.64 ± 9.26 ng/mg dry wt. of tissue with sGAG and hydroxyproline (HYP) contents of 72.53 ± 16.43. and 78.38 ± 8.46 µg/mg dry wt. respectively. The dynamic viscoelastic properties were found to be preserved (complex modulus: 17.92-16.62 kPa across a range of frequencies) while the equilibrium properties were found to have significantly decreased (aggregate modulus: 11.51 ± 9.19 kPa) compared to the non-decelled fresh bNP tissue. Furthermore, the construct was also found to be cytocompatible with bone marrow stem cells (BMSCs). While it was not permissive of cellular infiltration, the BMSCs were still found to have lined the laser drilled channels in the scaffold. Taken together, the biomaterial developed herein could be a valuable addition to the AMIC family of scaffolds or serve as an off-the-shelf standalone option for cartilage repair.


Assuntos
Cartilagem Articular , Núcleo Pulposo , Humanos , Animais , Bovinos , Alicerces Teciduais/química , Qualidade de Vida , Cartilagem , Materiais Biocompatíveis , Condrogênese , Engenharia Tecidual/métodos
7.
J Orthop Res ; 42(8): 1682-1695, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38460961

RESUMO

Established risk factors for osteoarthritis (OA) include obesity, joint injury, age, race, and genetics. However, the relationship between cigarette smoking and OA has yet to be established. In the present study, we have employed the use of cigarette smoke extract (CSE), the water-soluble vapor phase of cigarette smoke, with porcine cartilage explants to investigate the effects of cigarette smoking on cartilage catabolism at the tissue level. Articular cartilage explants were first exposed to 2.5%, 5%, and 10% CSE to assess its effects on cartilage homeostasis. Following, the effects of CSE on OA-like inflammation was observed by culturing explants with a combined treatment of IL-1ß and TNF-α and 10% CSE (CSE + OA). Cartilage explants were assessed for changes in viability, biochemical composition, extracellular matrix (ECM) integrity, and equilibrium mechanical properties (aggregate modulus and hydraulic permeability). CSE alone leads to both a time- and dose-dependent decrease in chondrocyte viability but does not significantly affect sGAG content, percent sGAG loss, or the ECM integrity of cartilage explants. When IL-1ß and TNF-α were combined with 10% CSE, this led to a synergistic effect with more significant losses in viability, significantly more sGAG loss, and significantly higher production of ROS than OA-like inflammation only. Cartilage explant equilibrium mechanical properties were unaffected. Within the timeframe of this study, CSE alone does not cause OA but when combined with OA-like inflammation leads to worsened articular cartilage degeneration as measured by chondrocyte viability, sGAG loss, proteoglycan staining, and ROS production.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Osteoartrite/etiologia , Osteoartrite/patologia , Osteoartrite/metabolismo , Cartilagem Articular/patologia , Suínos , Fumaça/efeitos adversos , Interleucina-1beta/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Matriz Extracelular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Nicotiana/efeitos adversos , Progressão da Doença
8.
J Biomech ; 169: 112131, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739987

RESUMO

Cartilage endplates (CEPs) act as protective mechanical barriers for intervertebral discs (IVDs), yet their heterogeneous structure-function relationships are poorly understood. This study addressed this gap by characterizing and correlating the regional biphasic mechanical properties and biochemical composition of human lumbar CEPs. Samples from central, lateral, anterior, and posterior portions of the disc (n = 8/region) were mechanically tested under confined compression to quantify swelling pressure, equilibrium aggregate modulus, and hydraulic permeability. These properties were correlated with CEP porosity and glycosaminoglycan (s-GAG) content, which were obtained by biochemical assays of the same specimens. Both swelling pressure (142.79 ± 85.89 kPa) and aggregate modulus (1864.10 ± 1240.99 kPa) were found to be regionally dependent (p = 0.0001 and p = 0.0067, respectively) in the CEP and trended lowest in the central location. No significant regional dependence was observed for CEP permeability (1.35 ± 0.97 * 10-16 m4/Ns). Porosity measurements correlated significantly with swelling pressure (r = -0.40, p = 0.0227), aggregate modulus (r = -0.49, p = 0.0046), and permeability (r = 0.36, p = 0.0421), and appeared to be the primary indicator of CEP biphasic mechanical properties. Second harmonic generation microscopy also revealed regional patterns of collagen fiber anchoring, with fibers inserting the CEP perpendicularly in the central region and at off-axial directions in peripheral regions. These results suggest that CEP tissue has regionally dependent mechanical properties which are likely due to the regional variation in porosity and matrix structure. This work advances our understanding of healthy baseline endplate biomechanics and lays a groundwork for further understanding the role of CEPs in IVD degeneration.


Assuntos
Disco Intervertebral , Vértebras Lombares , Humanos , Vértebras Lombares/fisiologia , Disco Intervertebral/fisiologia , Pessoa de Meia-Idade , Masculino , Feminino , Porosidade , Adulto , Idoso , Glicosaminoglicanos/metabolismo , Fenômenos Biomecânicos , Cartilagem/fisiologia , Estresse Mecânico
9.
JCI Insight ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990647

RESUMO

Clarifying multifactorial musculoskeletal disorder etiologies supports risk analysis and development of targeted prevention and treatment modalities. Deep learning enables comprehensive risk factor identification through systematic analysis of disease datasets but does not provide sufficient context for mechanistic understanding, limiting clinical applicability for etiological investigations. Conversely, multiscale biomechanical modeling can evaluate mechanistic etiology within the relevant biomechanical and physiological context. We propose a hybrid approach combining 3D explainable deep learning and multiscale biomechanical modeling; we applied this approach to investigate temporomandibular joint (TMJ) disorder etiology by systematically identifying risk factors and elucidating mechanistic relationships between risk factors and TMJ biomechanics and mechanobiology. Our 3D convolutional neural network recognized TMJ disorder patients through subject-specific morphological features in condylar, ramus, and chin. Driven by deep learning model outputs, biomechanical modeling revealed that small mandibular size and flat condylar shape were associated with increased TMJ disorder risk through increased joint force, decreased tissue nutrient availability and cell ATP production, and increased TMJ disc strain energy density. Combining explainable deep learning and multiscale biomechanical modeling addresses the "mechanism unknown" limitation undermining translational confidence in clinical applications of deep learning and increases methodological accessibility for smaller clinical datasets by providing the crucial biomechanical context.

10.
Adv Healthc Mater ; : e2303706, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523366

RESUMO

The shortage of suitable donor meniscus grafts from the knee and temporomandibular joint (TMJ) impedes treatments for millions of patients. Vitrification offers a promising solution by transitioning these tissues into a vitreous state at cryogenic temperatures, protecting them from ice crystal damage using high concentrations of cryoprotectant agents (CPAs). However, vitrification's success is hindered for larger tissues (>3 mL) due to challenges in CPA penetration. Dense avascular meniscus tissues require extended CPA exposure for adequate penetration; however, prolonged exposure becomes cytotoxic. Balancing penetration and reducing cell toxicity is required. To overcome this hurdle, a simulation-based optimization approach is developed by combining computational modeling with microcomputed tomography (µCT) imaging to predict 3D CPA distributions within tissues over time accurately. This approach minimizes CPA exposure time, resulting in 85% viability in 4-mL meniscal specimens, 70% in 10-mL whole knee menisci, and 85% in 15-mL whole TMJ menisci (i.e., TMJ disc) post-vitrification, outperforming slow-freezing methods (20%-40%), in a pig model. The extracellular matrix (ECM) structure and biomechanical strength of vitreous tissues remain largely intact. Vitreous meniscus grafts demonstrate clinical-level viability (≥70%), closely resembling the material properties of native tissues, with long-term availability for transplantation. The enhanced vitrification technology opens new possibilities for other avascular grafts.

11.
Commun Biol ; 6(1): 220, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828843

RESUMO

Successful organ or tissue long-term preservation would revolutionize biomedicine. Cartilage cryopreservation enables prolonged shelf life of articular cartilage, posing the prospect to broaden the implementation of promising osteochondral allograft (OCA) transplantation for cartilage repair. However, cryopreserved large sized cartilage cannot be successfully warmed with the conventional convection warming approach due to its limited warming rate, blocking its clinical potential. Here, we develope a nanowarming and ice-free cryopreservation method for large sized, intact articular cartilage preservation. Our method achieves a heating rate of 76.8 °C min-1, over one order of magnitude higher than convection warming (4.8 °C min-1). Using systematic cell and tissue level tests, we demonstrate the superior performance of our method in preserving large cartilage. A depth-dependent preservation manner is also observed and recapitulated through magnetic resonance imaging and computational modeling. Finally, we show that the delivery of nanoparticles to the OCA bone side could be a feasible direction for further optimization of our method. This study pioneers the application of nanowarming and ice-free cryopreservation for large articular cartilage and provides valuable insights for future technique development, paving the way for clinical applications of cryopreserved cartilage.


Assuntos
Cartilagem Articular , Suínos , Animais , Criopreservação/métodos , Preservação de Tecido , Imageamento por Ressonância Magnética
12.
JCI Insight ; 8(1)2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36413391

RESUMO

Antibiotic-induced shifts in the indigenous gut microbiota influence normal skeletal maturation. Current theory implies that gut microbiota actions on bone occur through a direct gut/bone signaling axis. However, our prior work supports that a gut/liver signaling axis contributes to gut microbiota effects on bone. Our purpose was to investigate the effects of minocycline, a systemic antibiotic treatment for adolescent acne, on pubertal/postpubertal skeletal maturation. Sex-matched specific pathogen-free (SPF) and germ-free (GF) C57BL/6T mice were administered a clinically relevant minocycline dose from age 6-12 weeks. Minocycline caused dysbiotic shifts in the gut bacteriome and impaired skeletal maturation in SPF mice but did not alter the skeletal phenotype in GF mice. Minocycline administration in SPF mice disrupted the intestinal farnesoid X receptor/fibroblast growth factor 15 axis, a gut/liver endocrine axis supporting systemic bile acid homeostasis. Minocycline-treated SPF mice had increased serum conjugated bile acids that were farnesoid X receptor (FXR) antagonists, suppressed osteoblast function, decreased bone mass, and impaired bone microarchitecture and fracture resistance. Stimulating osteoblasts with the serum bile acid profile from minocycline-treated SPF mice recapitulated the suppressed osteogenic phenotype found in vivo, which was mediated through attenuated FXR signaling. This work introduces bile acids as a potentially novel mediator of gut/liver signaling actions contributing to gut microbiota effects on bone.


Assuntos
Minociclina , Osteogênese , Animais , Camundongos , Antibacterianos/efeitos adversos , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Minociclina/farmacologia
13.
iScience ; 25(9): 104818, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36034228

RESUMO

Osteogenesis imperfecta (OI) is characterized by repeated bone fractures. Recent studies have shown that T lymphocytes and regulatory T cells (Tregs) regulate the functions of osteoclasts and osteoblasts, thus playing a role in bone turnover. We demonstrate an activated effector phenotype and higher secretion of pro-inflammatory cytokines, IFN-γ, and TNF-α in OI peripheral T cells as compared with wild-type (WT). Suppressive Tregs (spleen and thymus) were qualitatively similar, whereas there was a quantitative decrease in OI versus WT. Restoring Treg numbers by systemic transplantation in OI mice resulted in reduced T cell activation and effector cytokine secretion that correlated with significant improvements in tibial trabecular and cortical bone parameters and stiffness of femur, along with increased osteoblast mineralization and decreased osteoclast numbers. Therefore, Tregs can dampen the pro-inflammatory environment and enhance bone remodeling in OI mice. Thus, this study will be helpful in developing future autologous immunotherapy-based treatment modalities for OI.

14.
Am J Physiol Renal Physiol ; 299(6): F1507-14, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20926633

RESUMO

Recently, the use of overexpression of telomerase reverse transcriptase (TERT) has led to the generation of immortalized human cell lines. However, this cell immortalization approach has not been reported in well-differentiated mouse cells, such as renal epithelial cells. We sought to establish and then characterize a mouse collecting duct cell line, using ectopic expression of mTERT. Isolated primary cortical collecting duct (CCD) cell lines were transduced with mouse (m)TERT, using a lentiviral vector. mTERT-negative cells did not survive blasticidin selection, whereas mTERT-immortalized cells proliferated in selection media for over 40 subpassages. mTERT messenger RNA and telomerase activity was elevated in these cells, compared with an SV40-immortalized cell line. Flow cytometry with Dolichos biflorus agglutinin was used to select the CCD principal cells, and we designated this cell line mTERT-CCD. Cells were well differentiated and exhibited morphological characteristics typically found in renal epithelial cells, such as tight junction formation, microvilli, and primary cilia. Further characterization using standard immunofluorescence revealed abundant expression of aquaporin-2 and the vasopressin type 2 receptor. mTERT-CCD cells exhibited cAMP-stimulated/benzamil-inhibited whole cell currents. Whole cell patch-clamp currents were also enhanced after a 6-day treatment with aldosterone. In conclusion, we have successfully used mTERT to immortalize mouse collecting duct cells that retain the basic in vivo phenotypic characteristics of collecting duct cells. This technique should be valuable in generating cell lines from genetically engineered mouse models.


Assuntos
Técnicas de Cultura de Células/métodos , Linhagem Celular , Túbulos Renais Coletores/citologia , Telomerase/genética , Animais , Túbulos Renais Coletores/metabolismo , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
J Bone Joint Surg Am ; 102(19): 1694-1702, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33027123

RESUMO

BACKGROUND: We sought to define "at risk" loading conditions associated with rotating-platform total knee arthroplasty (TKA-RP) implants that predispose to insert subluxation and spinout and to quantify tolerances for flexion-extension gap asymmetry and laxity in order to prevent these adverse events. METHODS: Biomechanical testing was performed on 6 fresh-frozen cadaveric limbs with a TKA-RP implant with use of a gap-balancing technique, followed by sequential femoral component revision with variable-thickness polyethylene inserts to systematically represent 5 flexion-extension mismatch and asymmetry conditions. Each configuration was subjected to mechanical loading at 0°, 30°, and 60°. Rotational displacement of the insert on the tibial baseplate, lateral compartment separation, and insert concavity depth were measured with use of a digital caliper. Yield torque, a surrogate for ease of insert rotation and escape of the femoral component, was calculated with use of custom MATLAB code. RESULTS: Design-intended insert rotation decreased with increasing knee flexion angles in each loading configuration. Likewise, yield torque increased with increasing joint flexion and decreased with increasing joint laxity in all testing configurations. Insert instability and femoral condyle displacement were reproduced in positions of increasing knee flexion and asymmetrical flexion gap laxity. The depth of lateral polyethylene insert concavity determined femoral condylar capture and defined a narrow tolerance of <2 mm in the smallest implant sizes for flexion gap asymmetry leading to rotational insert instability. CONCLUSIONS: Decreased femoral-tibial articular surface conformity with increasing knee flexion and asymmetrical flexion gap laxity enable paradoxical motion of the femoral component on the upper insert surface rather than the undersurface, as designed. CLINICAL RELEVANCE: Mobile-bearing TKA-RP is a technically demanding procedure requiring a snug symmetrical flexion gap. As little as 2 mm of asymmetrical lateral flexion laxity can result in decreased conformity, condyle liftoff, and insert subluxation. Flexion beyond 30° decreases bearing surface contact area and predisposes to reduced insert rotation and mechanical malfunction.


Assuntos
Artroplastia do Joelho/métodos , Amplitude de Movimento Articular/fisiologia , Fenômenos Biomecânicos , Cadáver , Fêmur/cirurgia , Humanos , Prótese do Joelho , Masculino , Pessoa de Meia-Idade , Polietileno , Desenho de Prótese , Reoperação , Rotação , Tíbia/cirurgia , Torque
16.
Spine Deform ; 7(2): 213-219, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30660214

RESUMO

STUDY DESIGN: Large animal study. OBJECTIVE: Create a thoracic hyperkyphotic deformity in an immature porcine spine, so that future researchers may use this model to validate spinal instrumentation and other therapies used in the treatment of hyperkyphosis. SUMMARY OF BACKGROUND DATA: Although several scoliotic animal models have been developed, there have been no reports of a thoracic hyperkyphotic animal model creation in an immature animal. The present study was designed to produce a porcine hyperkyphotic model by the time the pig weighed 25 kg, which corresponds to the approximate weight of a child undergoing surgery for early-onset scoliosis (EOS). METHODS: Successful surgical procedures were performed in 6 consecutive 10-kg (male, 5-week-old) immature Yorkshire pigs. Procedure protocol consisted of 1) a left thoracotomy at T10-T11, 2) screw placement at T9 and T11, 3) partial vertebrectomy at T10, 4) posterior interspinous ligament transection, and 5) placement of wire loop around screws and tightening. Weekly x-ray imaging was performed preoperatively and postoperatively, documenting progressively increasing kyphosis as the pig grew. Necropsy was performed 5-6 weeks after surgery, with CT, slab section, and histologic analysis. RESULTS: Average T9-T11 kyphosis (measured by sagittal Cobb angle) was 6.1° ± 1.4° (mean ± SD) preoperatively, 30.5° ± 1.0° immediately postoperation, and significantly increased to 50.3° ± 7.2° (p < .0001) over 5-6 weeks in 6 consecutive pigs at time of necropsy. CONCLUSIONS: An animal model of relatively more rigid-appearing thoracic hyperkyphotic deformities in immature pigs has been created. Subsequent studies addressing management of early-onset kyphosis with spinal instrumentation are now possible. LEVEL OF EVIDENCE: Level V.


Assuntos
Modelos Animais de Doenças , Cifose , Suínos , Animais , Masculino , Vértebras Torácicas
17.
JAMA Otolaryngol Head Neck Surg ; 144(9): 769-775, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30054621

RESUMO

Importance: The chimeric anterolateral thigh osteomyocutaneous (ALTO) free flap is a recently described microvascular option for head and neck osseous defects associated with complex soft-tissue requirements. To date, the association of ALTO flap harvest with femur structural integrity and the need for routine prophylactic fixation following harvest has been incompletely described. Objective: To investigate the association of ALTO flap harvest, with and without prophylactic fixation, on femur structural integrity as measured by 4-point bend and torsional biomechanical testing. Design and Setting: At a research laboratory, 24 synthetic fourth-generation composite femurs with validated biomechanical properties underwent 10-cm-long, 30% circumferential osteotomies at the proximal middle third of the femur; 6 femurs served as controls. Osteotomized femurs with and without fixation underwent torsional and 4-point bend biomechanical testing. Femur fixation consisted of intramedullary nail and distal interlock screw placement. Main Outcomes and Measures: Force and torque to fracture (expressed in kilonewtons [kN] and Newton meters [N∙m], respectively) were compared between controls, osteotomized femurs without fixation, and osteotomized femurs with fixation. Additional outcome measures included femur stiffness and fracture patterns. Results: On posterior to anterior (PA) 4-point bend testing, force to fracture of osteotomized femurs was 22% of controls (mean difference, 8.3 kN; 95% CI, 6.6-10.0 kN). On torsional testing the torque to fracture of osteotomized femurs was 12% of controls (mean difference, 351.1 N∙m; 95% CI, 307.1-395.1 N∙m). Following fixation there was a 67% improvement in PA force to fracture and a 37% improvement in torque to fracture. However, osteotomized femurs with fixation continued to have a reduced PA force to fracture at 37% of controls (mean difference, 6.8 kN; 95% CI, 4.5-9.2 kN) and torque to fracture at 16% of controls (mean difference, 333.7 N∙m; 95% CI, 306.8-360.6 N∙m). On torsional testing, all osteotomized femurs developed similar spiral fractures through a corner of the distal osteotomy site. This fracture pattern changed after prophylactic fixation with femurs developing nondisplaced fractures through the proximal osteotomy site. There were no underlying hardware failures during testing of osteotomized femurs with fixation. Conclusions and Relevance: Anterolateral thigh osteomyocutaneous flap harvest results in significant changes in the structural integrity of the femur. Postoperative stabilization should be strongly considered, with future research directed at investigating the clinical significance of residual biomechanical changes following femur fixation.


Assuntos
Transplante Ósseo/métodos , Fêmur/cirurgia , Fixação Intramedular de Fraturas/métodos , Retalhos de Tecido Biológico/transplante , Retalho Miocutâneo/transplante , Osteotomia , Procedimentos de Cirurgia Plástica/métodos , Adulto , Idoso , Fenômenos Biomecânicos , Pinos Ortopédicos , Parafusos Ósseos , Fraturas do Fêmur/etiologia , Fraturas do Fêmur/prevenção & controle , Fêmur/patologia , Fixação Intramedular de Fraturas/instrumentação , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Osteotomia/efeitos adversos , Osteotomia/métodos , Complicações Pós-Operatórias/prevenção & controle , Coxa da Perna
18.
Spine (Phila Pa 1976) ; 43(2): E60-E67, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28542098

RESUMO

STUDY DESIGN: In vitro measurements of the oxygen consumption rates (OCR) of human intervertebral disc (IVD) cells. OBJECTIVE: The aim of this study was to determine the differences in the OCR of nondegenerate and degenerate human annulus fibrosus (AF), nucleus pulposus (NP), and cartilage endplate (CEP) cells at different glucose concentrations. SUMMARY OF BACKGROUND DATA: The avascular nature of the IVD creates a delicate balance between rate of nutrient transport through the matrix and rate of disc cell consumption necessary to maintain tissue health. Previous studies have shown a dependence of OCR for animal (e.g., bovine and porcine) IVD cells on oxygen level and glucose concentration. However, the OCR of nondegenerate human IVD cells compared to degenerate human IVD cells at different glucose concentrations has not been investigated. METHODS: IVD cells were isolated from the AF, NP, and CEP regions of human cadaver spines and surgical samples. The changes in oxygen concentration were recorded when cells were sealed in a metabolic chamber. The OCR of cells was determined by curve fitting using the Michaelis-Menton equation. RESULTS: Under identical cell culture conditions, the OCR of degenerate human IVD cells was three to five times greater than that of nondegenerate human IVD cells. The degenerate IVD cells cultured in low-glucose medium (1 mmol/L) exhibited the highest OCR compared to degenerate cells cultured at higher glucose levels (i.e., 5 mmol/L, 25 mmol/L), whereas no significant differences in OCR were found among the nondegenerate IVD cells for all glucose levels. CONCLUSION: Considering the significantly higher OCR and unique response to glucose of degenerate human IVD cells, the degeneration of the IVD is associated with a cell phenotypic change related to OCR. The OCR of IVD cells reported in this study will be valuable for understanding human IVD cellular behavior and tissue nutrition in response to disc degeneration. LEVEL OF EVIDENCE: N/A.


Assuntos
Anel Fibroso/fisiopatologia , Cartilagem/fisiopatologia , Degeneração do Disco Intervertebral/fisiopatologia , Núcleo Pulposo/fisiopatologia , Consumo de Oxigênio , Adulto , Idoso , Anel Fibroso/citologia , Cartilagem/citologia , Feminino , Glucose/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Núcleo Pulposo/citologia , Consumo de Oxigênio/efeitos dos fármacos , Adulto Jovem
19.
Ann Biomed Eng ; 46(2): 310-317, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29181723

RESUMO

To investigate potential mechanisms associated with the increased prevalence of temporomandibular joint (TMJ) disorders among women, the study objective was to determine sex-dependent and region-dependent differences in fixed charge density (FCD) using an electrical conductivity method. Seventeen TMJ discs were harvested from nine males (77 ± 4 years) and eight females (86 ± 4 years). Specimens were prepared from the anterior band, posterior band, intermediate zone, medial disc and lateral disc. FCD was determined using an electrical conductivity method, assessing differences among disc regions and between sexes. Statistical modeling showed significant effects for donor sex (p = 0.002), with cross-region FCD for male discs 0.051 ± 0.018 milliequivalent moles per gram (mEq/g) wet tissue and 0.043 ± 0.020 mEq/g wet tissue for female discs. FCD was significantly higher for male discs compared to female discs in the posterior band, with FCD 0.063 ± 0.015 mEq/g wet tissue for male discs and 0.032 ± 0.020 mEq/g wet tissue for female discs (p = 0.050). These results indicate FCD contributes approximately 20% towards TMJ disc compressive modulus, through osmotic swelling pressure regulation. Additionally, FCD regulates critical extracellular ionic/osmotic and nutrient environments. Sexual dimorphisms in TMJ disc FCD, and resulting differences in extracellular ionic/osmotic and nutrient environments, could result in altered mechano-electro-chemical environments between males and females and requires further study.


Assuntos
Condutividade Elétrica , Caracteres Sexuais , Disco da Articulação Temporomandibular/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Disco da Articulação Temporomandibular/anatomia & histologia
20.
ACS Appl Mater Interfaces ; 10(24): 20237-20243, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29873237

RESUMO

Memristors with rich interior dynamics of ion migration are promising for mimicking various biological synaptic functions in neuromorphic hardware systems. A graphene-based memristor shows an extremely low energy consumption of less than a femtojoule per spike, by taking advantage of weak surface van der Waals interaction of graphene. The device also shows an intriguing programmable metaplasticity property in which the synaptic plasticity depends on the history of the stimuli and yet allows rapid reconfiguration via an immediate stimulus. This graphene-based memristor could be a promising building block toward designing highly versatile and extremely energy efficient neuromorphic computing systems.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa