Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(5): e2305316, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37661568

RESUMO

Hierarchically porous carbons with tailor-made properties are essential for applications wherein rich active sites and fast mass transfer are required. Herein, a rapid aerosol-confined salt/surfactant templating approach is proposed for synthesizing hierarchically porous carbon microspheres (HPCMs) with a maze-like structure and large mesopore tunnels for high-performance tri-phase catalytic ozonation. The confined assembly in drying microdroplets is crucial for coherent salt (NaCl) and surfactant (F127) dual templating without macroscopic phase separation. The HPCMs possess tunable sizes, a maze-like structure with highly open macropores (0.3-30 µm) templated from NaCl crystal arrays, large intrawall mesopore tunnels (10-45 nm) templated from F127, and rich micropores (surface area >1000 m2 g-1 ) and oxygen heteroatoms originated from NaCl-confined carbonization of phenolic resin. The structure formation mechanism of the HPCMs and several influencing factors on properties are elaborated. The HPCMs exhibit superior performance in gas-liquid-solid tri-phase catalytic ozonation for oxalate degradation, owing to their hierarchical pore structure for fast mass transfer and rich defects and oxygen-containing groups (especially carbonyl) for efficient O3 activation. The reactive oxygen species responsible for oxalate degradation and the influences of several structure parameters on performance are discussed. This work may provide a platform for producing hierarchically porous materials for various applications.

2.
Small ; 20(26): e2309114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38233203

RESUMO

Deep cracking of bulky hydrocarbons on zeolite-containing catalysts into light products with high activity, desired selectivity, and long-term stability is demanded but challenging. Herein, the efficient deep cracking of 1,3,5-triisopropylbenzene (TIPB) on intimate ZSM-5@AlSBA-15 composites via tandem catalysis is demonstrated. The rapid aerosol-confined assembly enables the synthesis of the composites composed of a continuous AlSBA-15 matrix decorated with isolated ZSM-5 nanoparticles. The two components at various ZSM-5/AlSBA-15 mass ratios are uniformly mixed with chemically bonded pore walls, interconnected pores, and eliminated external surfaces of nanosized ZSM-5. The typical composite with a ZSM-5/AlSBA-15 mass ratio of 0.25 shows superior performance in TIPB cracking with outstanding activity (≈100% conversion) and deep cracking selectivity (mass of propylene + benzene > 60%) maintained for a long time (> 6 h) under a high TIPB flux (2 mL h-1), far better (several to tens of times higher) than the single-component and physically mixed catalysts and superior to literature results. The high performance is attributed to the cooperative tandem catalytic process, that is, selective and timely pre-cracking of TIPB to isopropylbenzene (IPB) in AlSBA-15 and subsequently timely diffusion and deep cracking of IPB in nanosized ZSM-5.

3.
J Am Chem Soc ; 145(9): 5486-5495, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36820815

RESUMO

Ammonia borane (AB) has been regarded as a promising material for chemical hydrogen storage. However, the development of efficient, cost-effective, and stable catalysts for H2 generation from AB hydrolysis remains a bottleneck for realizing its practical application. Herein, a step-by-step reduction strategy has been developed to synthesize a series of bimetallic species with small sizes and high dispersions onto various metal oxide supports. Superior to other non-noble metal species, the introduction of Co species can remarkably and universally promote the catalytic activity of various noble metals (e.g., Pt, Rh, Ru, and Pd) in AB hydrolysis reactions. The optimized Pt0.1%Co3%/TiO2 catalyst exhibits a superhigh H2 generation rate from AB hydrolysis, showing a turnover frequency (TOF) value of 2250 molH2 molPt-1 min-1 at 298 K. Such a TOF value is about 10 and 15 times higher than that of the monometal Pt/TiO2 and commercial Pt/C catalysts, respectively. The density functional theory (DFT) calculation reveals that the synergy between Pt and CoO species can remarkably promote the chemisorption and dissociation of water molecules, accelerating the H2 evolution from AB hydrolysis. Significantly, the representative Pt0.25%Co3%/TiO2 catalyst exhibits excellent stability, achieving a record-high turnover number of up to 215,236 at room temperature. The excellent catalytic performance, superior stability, and low cost of the designed catalysts create new prospects for their practical application in chemical hydrogen storage.

4.
J Am Chem Soc ; 145(26): 14298-14306, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37345939

RESUMO

Colloidal chemistry holds promise to prepare uniform and size-controllable pre-catalysts; however, it remains a challenge to unveil the atomic-level transition from pre-catalysts to active catalytic surfaces under the reaction conditions to enable the mechanistic design of catalysts. Here, we report an ambient-pressure X-ray photoelectron spectroscopy study, coupled with in situ environmental transmission electron microscopy, infrared spectroscopy, and theoretical calculations, to elucidate the surface catalytic sites of colloidal Ni nanoparticles for CO2 hydrogenation. We show that Ni nanoparticles with phosphine ligands exhibit a distinct surface evolution compared with amine-capped ones, owing to the diffusion of P under oxidative (air) or reductive (CO2 + H2) gaseous environments at elevated temperatures. The resulting NiPx surface leads to a substantially improved selectivity for CO production, in contrast to the metallic Ni, which favors CH4. The further elimination of surface metallic Ni sites by designing multi-step P incorporation achieves unit selectivity of CO in high-rate CO2 hydrogenation.

5.
Small ; 19(7): e2204744, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36494189

RESUMO

Supported bimetallic nanoparticles (NPs) with ultrasmall sizes and homogeneous alloying are attractive for catalysis. However, facile synthesis of this type of material remains very challenging. Here, the aerosol drying impregnation method for rapid, scalable, and general synthesis of silica-supported bimetallic NPs is proposed. The method relies on aerosol spray drying to promote the mixing and dispersing of binary metal precursors on SiO2 . It is capable of controlling the composition and size of bimetallic NPs and avoids the use of expensive metal complex salts and complicated experiment procedures. Twelve permutations combining a noble metal (Pd, Ru, and Pt) and a base one (Fe, Co, Ni, and Cu) with ultrasmall sizes (1.4-2.2 nm in average size), uniform dispersion, and good alloying are synthesized. Interesting activity and selectivity trends in catalytic semihydrogenation of phenylacetylene over the supported Pd-based NPs can be observed. The silica-supported PdNi NPs deliver both high activity and styrene selectivity. Spectroscopic and density functional theory calculation results reveal the improved chemoselectivity originated from the suitably down-shifted d-band center of the PdNi NPs inducing an increased energy barrier for overhydrogenation and a weakened styrene adsorption.

6.
Environ Sci Technol ; 54(6): 3714-3724, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32069034

RESUMO

Bimetallic Fe-Mn oxide (BFMO) has been regarded as a promising activator of peroxysulfate (PS), the sustained activity and durability of BFMO for long-term activation of PS in situ, however, is unclear for groundwater remediation. A BFMO (i.e., Mn1.5FeO6.35) was prepared and explored for PS-based in situ chemical oxidation (ISCO) of trichloroethylene (TCE) in sand columns with simulated/actual groundwater (SGW/AGW). The sustained activity of BFMO, oxidant utilization efficiency, and postreaction characterization were particularly investigated. Electron spin resonance (ESR) and radical scavenging tests implied that sulfate radicals (SO4•-) and hydroxyl radicals (HO•) played major roles in degrading TCE, whereas singlet oxygen (1O2) contributed less to TCE degradation by BFMO-activated Oxone. Fast degradation and almost complete dechlorination of TCE in AGW were obtained, with reaction stoichiometry efficiencies (RSE) of ΔTCE/ΔOxone at 3-5%, much higher than those reported RSE values in H2O2-based ISCO (≤0.28%). HCO3- did not show detrimental effect on TCE degradation, and effects of natural organic matters (NOM) were negligible at high Oxone dosage. Postreaction characterizations displayed that the BFMO was remarkably stable with sustained activity for Oxone activation after 115 days of continuous-flow test, which therefore can be promising catalyst for Oxone-based ISCO for TCE-contaminated groundwater remediation.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Peróxido de Hidrogênio , Oxirredução , Óxidos , Ácidos Sulfúricos
7.
Small ; 13(42)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28940901

RESUMO

To maximize the utilizing efficiency of cobalt (Co) and optimize its catalytic activity and stability, engineering of size and interfacial chemical properties, as well as controllable support are of ultimate importance. Here, the concept of coating uniform thin Co/N-doped carbon layers into the mesopore surfaces of mesoporous silica is proposed for heterogeneous aqueous catalysis. To approach the target, a one-step solvent-free melting-assisted coating process, i.e., heating a mixture of a cobalt salt, an amino acid (AA), and a mesoporous silica, is developed for the synthesis of mesoporous composites with thin Co/N-doped carbon layers uniformly coated within mesoporous silica, high surface areas (250-630 m2 g-1 ), ordered mesopores (7.0-8.4 nm), and high water dispersibility. The strong silica/AA adhesive interactions and AA cohesive interactions direct the uniform coating process. The metal/N coordinating, carbon anchoring, and mesopore confining lead to the formation of tiny Co nanoclusters. The carbon intercalation and N coordination optimize the interfacial properties of Co for catalysis. The optimized catalyst exhibits excellent catalytic performance for tandem hydrogenation of nitrobenzene and dehydrogenation of NaBH4 with well-matched reaction kinetics, 100% conversion and selectivity, high turnover frequencies, up to ≈6.06 molnitrobenzene molCo-1 min-1 , the highest over transition-metal catalysts, and excellent stability and magnetic separability.

8.
J Am Chem Soc ; 137(8): 2808-11, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25680067

RESUMO

Here we report a novel interface tension-induced shrinkage approach to realize the synthesis of monodispersed asymmetrical mesoporous carbon nanohemispheres. We demonstrate that the products exhibit very uniform hemispherical morphology (130 × 60 nm) and are full of ordered mesopores, endowing them high surface areas and uniform pore sizes. These monodispersed mesoporous carbon hemispheres display excellent dispersibility in water for a long period without any aggregation. Moreover, a brand new feature of the mesoporous carbon materials has been observed for the first time: these monodispersed mesoporous carbon hemispheres show excellent thermal generation property under a NIR irradiation.


Assuntos
Carbono/química , Nanoestruturas/química , Nanotecnologia/métodos , Modelos Moleculares , Conformação Molecular , Porosidade , Tensão Superficial
9.
Small ; 11(8): 1003-10, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25331302

RESUMO

Monodisperse Pt nanoparticles (NPs) studded in a three-dimensional (3D) graphene nanobox are successfully synthesized through a simple in-situ confined growth route for the first time. The nano-zeolite A was used as a 3D substrate for in-situ growth of tri-layered graphenes on the crystal-surfaces, meanwhile, the inner micropores of which can also be utilized for the confined growth of Pt nanoparticles. The graphene sheets are curved on the edges to form a 3D hollow box morphology, where the monodisperse Pt nanoparticles are homogeneously studded on the inner surfaces. Moreover, the Pt content can be regulated from ∼8 to 50 wt%, and the particle size can be tuned from 2-5 nm by varying the pristine Pt-ion loading amount and CVD temperature. The Pt NP@graphene nanoboxes possess not only large pore volumes to effectively accommodate large amounts of oxygen, but also supply excellent electrical conductivity for the fast transfer of electrons (∼3.96 e(-)), resulting in a high efficiency (175 mA/mg Pt) and long-term stability (above 1000 cycles) for the oxygen reduction reaction.

10.
Angew Chem Int Ed Engl ; 53(11): 2888-92, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24519803

RESUMO

A facile approach for the synthesis of ultralight iron oxide hierarchical structures with tailorable macro- and mesoporosity is reported. This method entails the growth of porous Prussian blue (PB) single crystals on the surface of a polyurethane sponge, followed by in situ thermal conversion of PB crystals into three-dimensional mesoporous iron oxide (3DMI) architectures. Compared to previously reported ultralight materials, the 3DMI architectures possess hierarchical macro- and mesoporous frameworks with multiple advantageous features, including high surface area (ca. 117 m(2) g(-1)) and ultralow density (6-11 mg cm(-3)). Furthermore, they can be synthesized on a kilogram scale. More importantly, these 3DMI structures exhibit superparamagnetism and tunable hydrophilicity/hydrophobicity, thus allowing for efficient multiphase interfacial adsorption and fast multiphase catalysis.

11.
J Colloid Interface Sci ; 663: 749-760, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38432173

RESUMO

Mesoporous aluminosilicates Al-SBA-15 with large pore sizes and suitable acid properties are promising substitutes to zeolites for catalytic cracking of bulky hydrocarbons without molecular diffusion limitation. The conventional processes to synthesize Al-SBA-15 are time-consuming and often suffer from low "framework" Al contents. Herein, Al-SBA-15 microspheres are synthesized using the rapid and scalable microfluidic jet spray drying technique. They possess uniform particle sizes (45-60 µm), variable surface morphologies, high surface areas (264-340 m2/g), uniform mesopores (3.8-4.9 nm) and rich acid sites (126-812 µmol/g) and high acid strength. Their physicochemical properties are compared with the counterparts synthesized using traditional hydrothermal and evaporation-induced self-assembly methods. The spray drying technique results in a higher incorporation of aluminum (Al) atoms into the silica "framework" compared to the other two methods. The catalytic cracking efficiencies of 1,3,5-triisopropylbenzene (TIPB) on the Al-SBA-15 materials synthesized using the three different methods and nanosized ZSM-5 are compared. The optimal spray-dried Al-SBA-15 exhibits the best performance with 100 % TIPB conversion, excellent selectivity (about 75 %) towards the formation of deeply cracked products (benzene and propylene) and high stability. The catalytic performances of the spray-dried Al-SBA-15 with varying Si/Al ratios are also compared. The reasons for the different performances of the different materials are discussed, where the mesopores, high acid density and strength are observed to play the most critical role. This work might provide a basis for the synthesis of mesoporous rich metal-substituted silica materials for different catalytic applications.

12.
J Colloid Interface Sci ; 673: 847-859, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908284

RESUMO

Morphology and facet effects of metal oxides in heterogeneous catalytic ozonation (HCO) are attracting increasing interests. In this paper, the different HCO performances for degradation and mineralization of phenol of seven ceria (CeO2) catalysts, including four with different morphologies (nanorod, nanocube, nanooctahedron and nanopolyhedron) and three with the same nanorod morphology but different exposed facets, are comparatively studied. CeO2 nanorods with (110) and (100) facets exposed show the best performance, much better than that of single ozonation, while CeO2 nanocubes and nanooctahedra show performances close to single ozonation. The underlying reason for their different HCO performances is revealed using various experimental and density functional theory (DFT) calculation results and the possible catalytic reaction mechanism is proposed. The oxygen vacancy (OV) is found to be pivotal for the HCO performance of the different CeO2 catalysts regardless of their morphology or exposed facet. A linear correlation is discerned between the rate of catalytic decomposition of dissolved ozone (O3) and the density of Frenkel-type OV. DFT calculations and in-situ spectroscopic studies ascertain that the existence of OV can boost O3 activation on both the hydroxyl (OH) and Ce sites of CeO2. Conversely, various facets without OV exhibit similar O3 adsorption energies. The OH group plays an important role in activating O3 to produce hydroxyl radical (∙OH) for improved mineralization. This work may offer valuable insights for designing Facet- and OV-regulated catalysts in HCO for the abatement of refractory organic pollutants.

13.
J Am Chem Soc ; 135(4): 1181-4, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23286838

RESUMO

Herein, we develop a reproducible in situ crystallization route to synthesize uniform functional ZSM-5 microspheres composed of aggregated ZSM-5 nanorods and well-dispersed uniform Fe(3)O(4) nanoparticles (NPs). The growth of such unique microspheres undergoes a NP-assisted recrystallization process from surface to core. The obtained magnetic ZSM-5 microspheres possess a uniform size (6-9 µm), ultrafine uniform Fe(3)O(4) NPs (~10 nm), good structural stability, high surface area (340 m(2)/g), and large magnetization (~8.6 emu/g) and exhibit a potential application in Fischer-Tropsch synthesis.


Assuntos
Óxido Ferroso-Férrico/química , Microesferas , Nanotubos/química , Zeolitas/química , Cristalização , Nanopartículas de Magnetita/química , Tamanho da Partícula , Propriedades de Superfície , Zeolitas/síntese química
14.
Environ Sci Technol ; 47(15): 8633-41, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23790017

RESUMO

To alleviate the environmental and health threats from water resources polluted by large-sized microcystins (MCs), we demonstrate for the first time that ordered mesoporous silica materials with large pore sizes of 2-12 nm can be used as adsorbents for rapid and efficient removal of MCs. The obvious correlations between adsorption performance of MCs and physicochemical properties of adsorbents including pore mesostructure, texture and size, and surface chemistry have been well established. Accordingly, an excellent candidate, mesoporous silica SBA-15 templated from Pluronic P123 has been sorted out, exhibiting extremely rapid rate (one minute) as well as high capacities of 5.99 and 13 mg g(-1) for removing high-concentration MC-LR and MC-RR, respectively, which are much higher than that of other silica-based adsorbents reported previously. The adsorption performance can be further improved from 50 to 95% at around pH 4 by grafting positively charged and/or hydrophobic groups onto pore surface of SBA-15. Furthermore, thermodynamic and kinetic evaluations provide additional valuable information for a better understanding of the adsorption process. Given the excellent adsorption performance, it is expected that mesoporous silica materials with unique characteristics are attractive for actual applications in removal of MCs from wastewater.


Assuntos
Microcistinas/isolamento & purificação , Dióxido de Silício/química , Adsorção , Cinética , Microscopia Eletrônica de Transmissão , Espalhamento a Baixo Ângulo , Termodinâmica , Difração de Raios X
15.
Angew Chem Int Ed Engl ; 52(51): 13764-8, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24222382

RESUMO

Drying to meet you: Using microfluidic jet spray drying technology in conjunction with the evaporation-induced self-assembly strategy gives fast assembly (2 s) of mesoporous carbon microspheres. The key feature of the drying is the formation of a rigid silica crust which locks the particle size and shape.

16.
J Am Chem Soc ; 134(4): 2236-45, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22257228

RESUMO

Highly ordered mesoporous platinum@graphitic carbon (Pt@GC) composites with well-graphitized carbon frameworks and uniformly dispersed Pt nanoparticles embedded within the carbon pore walls have been rationally designed and synthesized. In this facile method, ordered mesoporous silica impregnated with a variable amount of Pt precursor is adopted as the hard template, followed by carbon deposition through a chemical vapor deposition (CVD) process with methane as a carbon precursor. During the CVD process, in situ reduction of Pt precursor, deposition of carbon, and graphitization can be integrated into a single step. The mesostructure, porosity and Pt content in the final mesoporous Pt@GC composites can be conveniently adjusted over a wide range by controlling the initial loading amount of Pt precursor and the CVD temperature and duration. The integration of high surface area, regular mesopores, graphitic nature of the carbon walls as well as highly dispersed and spatially embedded Pt nanoparticles in the mesoporous Pt@GC composites make them excellent as highly active, extremely stable, and methanol-tolerant electrocatalysts toward the oxygen reduction reaction (ORR). A systematic study by comparing the ORR performance among several carbon supported Pt electrocatalysts suggests the overwhelmingly better performance of the mesoporous Pt@GC composites. The structural, textural, and framework properties of the mesoporous Pt@GC composites are extensively studied and strongly related to their excellent ORR performance. These materials are highly promising for fuel cell applications and the synthesis method is quite applicable for constructing mesoporous graphitized carbon materials with various embedded nanophases.


Assuntos
Carbono/química , Metanol/química , Nanopartículas/química , Oxigênio/química , Platina/química , Dióxido de Silício/química , Catálise , Eletroquímica , Oxirredução , Tamanho da Partícula , Porosidade , Propriedades de Superfície
17.
J Am Chem Soc ; 134(29): 11864-7, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22746276

RESUMO

The development of a simple and reproducible route to prepare uniform core@TiO(2) structures is urgent for realizing multifunctional responses and harnessing multiple interfaces for new or enhanced functionalities. Here, we report a versatile kinetics-controlled coating method to construct uniform porous TiO(2) shells for multifunctional core-shell structures. By simply controlling the kinetics of hydrolysis and condensation of tetrabutyl titanate (TBOT) in ethanol/ammonia mixtures, uniform porous TiO(2) shell core-shell structures can be prepared with variable diameter, geometry, and composition as a core (e.g., α-Fe(2)O(3) ellipsoids, Fe(3)O(4) spheres, SiO(2) spheres, graphene oxide nanosheets, and carbon nanospheres). This method is very simple and reproducible, yet important, which allows an easy control over the thickness of TiO(2) shells from 0 to ~25, ~45, and ~70 nm. Moreover, the TiO(2) shells possess large mesoporosities and a uniform pore size of ~2.5 nm, and can be easily crystallized into anatase phase without changing the uniform core-shell structures.

18.
J Colloid Interface Sci ; 622: 62-74, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35489102

RESUMO

Semiconductor supported iron oxides are highly promising catalysts to remove organic pollutants in photo-Fenton. Development of robust composite catalysts with both high activity and stability is essential. In this work, amorphous iron oxide layers are uniformly and tightly anchored on two-dimensional (2D) BiOCl nanoplates through post precipitation-deposition and subsequent low-temperature thermal treatment at 150-350 °C. A low iron loading amount (1-2 wt.%) is sufficient to make the resulted composite (BiOCl-Fe) catalysts superior in photo-Fenton oxidation of phenol (10 mg/L) with high mineralization efficiency (up to about 80% in 60 min). The low-temperature thermal treatment can significantly enhance the stability of catalysts with much less iron leached and high photo-Fenton performance maintained. The intimate contact between the amorphous iron oxide layers and the 2D BiOCl nanoplates could guarantee the fluent electron transfer and efficient activation of H2O2 at interfaces. Compared with the pristine BiOCl, the BiOCl-Fe catalysts possess faster separation of the charge carriers. The predominant active species turns from O2•- in photocatalysis to HO• in the photo-Fenton catalysis. This research could provide enhanced understanding on the synthesis of robust catalysts and the structure optimization of BiOCl supported iron oxides for photo-Fenton.

19.
J Colloid Interface Sci ; 608(Pt 2): 1414-1421, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742061

RESUMO

The use of functional biodegradable wastes to treat environmental problems would create minimal extra burden to our environment. In this paper, we propose a sustainable and practical strategy to turn spent coffee ground (SCG) into a multifunctional palladium-loaded catalyst for water treatment instead of going into landfill as solid waste. Bleached delignified coffee ground (D-SCG) has a porous structure and a good capability to reduce Pd (II) to Pd (0). A large amount of nanocellulose is formed on the surface of SCG after bleaching by H2O2, which anchors and disperses the palladium nanoparticles (Pd NPs). The D-SCG loaded with Pd NPs (Pd-D-SCG) is superhydrophilic, which facilitates water transport and thus promotes efficient removal of organic pollutants dissolved in water. Pd-D-SCG exhibits excellent room temperature catalytic activity for the removal of 4-nitrophenol (4-NP) and methylene blue (MB) in water and shows good chemical stability and recyclability in water, with no obvious decrease even after five repeated cycles.


Assuntos
Nanopartículas Metálicas , Paládio , Café , Peróxido de Hidrogênio , Porosidade
20.
Chemosphere ; 307(Pt 2): 135967, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35952795

RESUMO

Controllable active site construction, crystal structure regulation and efficient charge separation are core issues in heterogeneous photo-Fenton. Herein, abundant oxygen vacancies and well-dispersed interfacial iron sites are simultaneously constructed in hierarchical nanosheet-assembled BiOCl microflowers. The composites exhibit superior performance in photo-Fenton oxidation of carbamazepine (10 mg L-1) with a low H2O2 concentration (1.3 mM). The high performance highly depends on the synergistic effects between oxygen vacancies and iron species. Rather than modulating the valence band, the involvements of oxygen vacancies and iron species could modify the conduction band of BiOCl. The presence of oxygen vacancies promotes the migration of photo-generated electrons and accelerates the redox cycling of ≡Fe(III)/≡Fe(II) to boost the activation of H2O2 to generate hydroxyl radicals, and oxygen vacancies can be well preserved after cyclic use. This work provides understanding on efficient utilization of oxygen vacancies and interfacial iron sites to assist photo-Fenton and the underlying electron transfer mechanism.


Assuntos
Ferro , Oxigênio , Carbamazepina , Catálise , Compostos Ferrosos , Peróxido de Hidrogênio/química , Ferro/química , Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa