Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 189: 114192, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32783891

RESUMO

Exposure to toxic metal contaminants, such as cadmium compounds (Cd2+), has been shown to induce adverse effects on various organs and tissues. In particular, blood vessels are severely impacted by Cd2+ exposure, which may lead to cardiovascular diseases (CVDs). According to previous studies, CVDs are associated with increased cyclooxygenase 2 (COX-2) levels. However, the mechanisms by which CdCl2-induced COX-2 overexpression leads to cardiovascular dysfunction remain unclear. Herein, we show that the relative gene expressions of VEGF and PTGS2 (COX-2 encoding gene) are positively correlated in CVDs patients. Moreover, we demonstrate that the in vitro administration of CdCl2 induces cytotoxicity and endoplasmic reticulum (ER) stress in primary human umbilical vein endothelial cells (HUVECs). The induction of ER stress and the overexpression of COX-2 in CdCl2-treated cells alters the protein level of vascular endothelial growth factor (VEGF), resulting in abnormal angiogenesis and increased cytotoxicity. At the pre-transcription level, the inhibition of ER stress by siGRP78 (a key mediator of ER stress) can restore normal angiogenesis in the CdCl2-exposed cells. Meanwhile, at the transcription level, the adverse effects of CdCl2 exposure may be reversed via genetic modification with siRNA (siPTGS2) or by using phytochemical inhibitors (parthenolide, PN) of COX-2. Finally, at the post-transcription level, COX-2 expression may be restricted by the binding of microRNA-101 (miR-101) to the 3'-UTR of PTGS2 mRNA. The use of mimic miR-101 (mi101) to induce the expression of miR-101 eventually leads to reduced COX-2 protein levels, relieved ER stress, and less abnormal angiogenesis and cytotoxicity of CdCl2-exposed primary HUVECs. Overall, our results suggest that CdCl2-induced abnormal angiogenesis is mediated by miR-101/COX-2/VEGF-axis-dependent ER stress, and that cardiovascular dysfunction may be controlled by manipulating COX-2 at the pre-transcription, transcription, and post-transcription levels.


Assuntos
Indutores da Angiogênese/toxicidade , Cloreto de Cádmio/toxicidade , Ciclo-Oxigenase 2/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , MicroRNAs/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos
2.
Chemosphere ; 262: 127878, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182097

RESUMO

Reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress and mitochondrial dysfunction are known to affect the structural and functional damage in the neural system. Cadmium (Cd) is an environmental contaminant that is widely found in numerous environmental matrices and exhibits potential neurotoxic risk. However, it remains unclear how mitochondrial redox status induces, and whether Cd destabilizes, the ER-mitochondria crosstalk to have a toxic effect on the nervous system. Herein, in our present study, bioinformatics analysis revealed an important role of protein interaction and mitochondrial machinery in brain samples from Alzheimer's disease (AD) patients. Furthermore, we established a neurotoxicity model in vivo and in vitro induced by cadmium chloride (CdCl2). We demonstrated that CdCl2 exposure disrupts the balance in mitochondrial redox represented by enhanced mitochondrial ROS (mitoROS) levels, which enhance mitofusin 2 (Mfn2) S-glutathionylation and interrupt the mitochondria-associated ER membranes (MAMs) for crosstalk between the ER and mitochondria to induce neuronal necroptosis. Mechanistically, it was shown that CdCl2 exposure significantly enhances the mitochondria-associated degradation (MAD) of Mfn2 via S-glutathionylation, which inhibits Mfn2 localization to the MAMs and subsequently leads to the formation of the RIPK1-RIPK3-p-MLKL complex (a key component of the necrosome) at MAMs, to promote neuronal necroptosis. Furthermore, the glutaredoxin 1 (Grx1) catalyzed and Mfn2 overexpression restored S-glu-Mfn2, MAMs perturbation, necrosome formation, and necroptosis in neurons induced by CdCl2 exposure in vitro. Moreover, the intervention with antioxidants to reduce mitochondrial redox, such as N-acetyl-l-cysteine (NAC) and mitochondria-targeted antioxidant Mito-TEMPO, reduced the S-glutathionylation of Mfn2 involved in the antagonism of CdCl2-induced necroptosis and neurotoxicity in vivo and in vitro. Taken together, our results are the first time to demonstrate that S-glutathionylation of Mfn2 promotes neuronal necroptosis via disruption of ER-mitochondria crosstalk in CdCl2-induced neurotoxicity, providing the novel mechanistic insight into how hazardous chemical-induced adverse effects in various organs and tissues could be interpreted by intraorganellar pathways under the control of MAMs components in neurons.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Necroptose , Animais , Cádmio/metabolismo , Cloreto de Cádmio/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores
3.
Nanotoxicology ; 14(2): 162-180, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31703536

RESUMO

Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are central microdomains of the ER that interact with mitochondria. MAMs provide an essential platform for crosstalk between the ER and mitochondria and play a critical role in the local transfer of calcium (Ca2+) to maintain cellular functions. Despite the potential uses of superparamagnetic iron oxide nanoparticles (SPIO-NPs) in biomedical applications, the hepatotoxicity of these nanoparticles (NPs) is not well characterized and little is known about the involvement of MAMs in ER-mitochondria crosstalk. We studied SPIO-NPs-associated hepatotoxicity in vitro and in vivo. In vitro, human normal hepatic L02 cells were exposed to SPIO-NPs (2.5, 7.5, and 12.5 µg/mL) for 6 h and SPIO-NPs (12.5 µg/mL) was found to induce apoptosis. In vivo, SPIO-NPs induced liver injury when mice were intravenously injected with 20 mg/kg body weight SPIO-NPs for 24 h. Based on both in vitro and in vivo studies, we found that the structure and Ca2+ transport function of MAMs were perturbated and an accumulation of cyclooxygenase-2 (COX-2) in MAMs fractions was increased upon treatment of SPIO-NPs. The interaction between COX-2 and the components of MAMs, in terms of IP3R-GRP75-VDAC1 complex, was also revealed. Furthermore, the role of COX-2 in SPIO-NPs-associated hepatotoxicity was investigated by modifying the expression of COX-2. We demonstrated that COX-2 increases the structural and functional ER-mitochondria coupling and enhances the efficacy of ER-mitochondria Ca2+ transfer through the MAMs, thus sensitizing hepatocytes to a mitochondrial Ca2+ overload-dependent apoptosis. Taken together, our findings link SPIO-NPs-triggered hepatotoxicity with ER-mitochondria Ca2+ crosstalk which is mediated by COX-2 and provide mechanistic insight into the impact of interorganelle ER-mitochondria communication on hepatic nanotoxicity.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Nanopartículas de Magnetita/toxicidade , Mitocôndrias Hepáticas/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Técnicas de Cultura de Células , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Ciclo-Oxigenase 2/genética , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/enzimologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo
4.
Front Plant Sci ; 7: 1545, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27803706

RESUMO

The relationship between Mg-protoporphyrin IX (Mg-Proto IX) signals and plant's tolerance to cold stress is investigated. Arabidopsis seedlings grown for 3 weeks were pretreated with 2 mM glutamate (Glu) and 2 mM MgCl2 for 48 h at room temperature to induce Mg-Proto IX accumulation. Then cold stress was performed at 4°C for additional 72 h. Glu + MgCl2 pre-treatments alleviated the subsequent cold stress significantly by rising the leaf temperature through inducing Mg-Proto IX signals. The protective role of Glu + MgCl2 treatment was greatly compromised in the mutants of Mg-Proto IX synthesis, Mg-Proto IX signaling, and cyanide-resistant respiration. And the enhancement of cold-responsive gene expression was greatly compromised in the mutants of Mg-Proto IX synthesis, Mg-Proto IX signaling and ABA signaling, but not in the mutant of cyanide-resistant respiration. Cold stress promoted cyanide-resistant respiration and leaf total respiration exponentially, which could be further induced by the Glu + MgCl2 treatment. Mg-Proto IX signals also activate antioxidant enzymes and increase non-enzymatic antioxidants [glutathione but not ascorbic acid (AsA)] to maintain redox equilibrium during the cold stress.

5.
Int J Clin Exp Pathol ; 7(10): 6524-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25400730

RESUMO

To investigate the effect of γ-terpineol on cell proliferation and apoptosis of human hepatoma BEL-7402 cells to elucidate its molecular mechanism. Here, BEL-7402 cells were treated with various concentrations (40, 80, 160, 320 and 640 µg/ml) of γ-terpineol for 48 h, cell proliferation was determined by 3-(4,5-dimethyl-thiazolyl-2)-2,5-diphenyl tetrazolium bromides (MTT) assay. Cell colony inhibition was determined by soft agar assay. Apoptosis and possible molecular mechanisms were evaluated by morphological observation, flow cytometry analysis, and DNA fragmentation assay. The γ-terpineol significantly suppressed BEL-7402 cell proliferation in a dose-dependent manner. Characteristic morphological and biochemical changes associated with apoptosis such as cells shrinkage, deformation and vacuolization of mitochondria, nuclear chromatin condensation and fragmentation, formation of apoptotic bodies were observed after BEL-7402 cells treated with γ-terpineol for 24 h and 48 h. Cell cycle were displayed by flow cytometry analysis, the γ-terpineol treatment resulted in accumulation of cells at G1 or S phase and a blockade of cell proliferation compared to control group. Treating BEL-7402 cells with 320 µg/ml of γ-terpineol for 36 h and 48 h, a typical apoptotic "DNA ladder" was observed using DNA fragmentation assay. The present study demonstrated that possible anti-cancer mechanism of γ-terpineol on human hematomas cells is through inducing cell apoptosis to suppress tumor cell growth.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Monoterpenos/farmacologia , Carcinoma Hepatocelular/ultraestrutura , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Fragmentação do DNA , Relação Dose-Resposta a Droga , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/ultraestrutura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa