RESUMO
Emergence of novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean serum neutralizing antibody titers of 14,000 to 21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within 4 d in seven of eight animals receiving 50 µg of RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only approximately twofold relative to WA1/2020. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-CoV-like Sarbecovirus vaccine development.
Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/virologia , Macaca mulatta/imunologia , Nanopartículas/química , Receptores Virais/metabolismo , SARS-CoV-2/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Ferritinas/química , SARS-CoV-2/metabolismo , Linfócitos T/imunologiaRESUMO
Recent outbreaks of emerging and re-emerging viruses have shown that timely detection of novel arboviruses with epidemic potential is essential to mitigate human health risks. There are rising concerns that emergent JEV genotype V (GV) is circulating in Asia, against which current vaccines may not be efficacious. To ascertain if JEV GV and other arboviruses are circulating in East Asia, we conducted next-generation sequencing on 260 pools of Culex tritaeniorhynchus and Culex bitaeniorhynchus mosquitoes (6540 specimens) collected at Camp Humphreys, Republic of Korea (ROK) in 2018. Interrogation of our data revealed a highly abundant and diverse virosphere that contained sequences from 122 distinct virus species. Our statistical and hierarchical analysis uncovered correlates of potential health, virological, and ecological relevance. Furthermore, we obtained evidence that JEV GV was circulating in Pyeongtaek and, retrospectively, in Seoul in 2016 and placed these findings within the context of human and fowl reservoir activity. Sequence-based analysis of JEV GV showed a divergent genotype that is the most distant from the GIII-derived live attenuated SA14-14-2 vaccine strain and indicated regions probably responsible for reduced antibody affinity. These results emphasize recent concerns of shifting JEV genotype in East Asia and highlight the critical need for a vaccine proven efficacious against this re-emergent virus. Together, our one-health approach to Culex viral metagenomics uncovered novel insights into virus ecology and human health.
Assuntos
Culex , Culicidae , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/epidemiologia , Genótipo , Humanos , Metagenômica , Filogenia , Estudos Retrospectivos , ViromaRESUMO
In the last week of September 2023, a surge of influenza-like illness was observed among students of the Armed Forces of the Philippines (AFP) Health Service Education and Training Center, where 48 (27 males and 21 females; age in years: mean 33, range 27-41) of 247 military students at the Center presented with respiratory symptoms. Between September 25 and October 10, 2023, all 48 symptomatic students were evaluated with real-time reverse transcription polymerase chain reaction and sequencing for both influenza and SARS-CoV-2. Thirteen (27%) students were found positive for influenza A/H3 only, 6 (13%) for SARS-CoV-2 only, and 4 (8%) were co-infected with influenza A/H3 and SARS-CoV-2. Seventeen influenza A/ H3N2 viruses belonged to the same clade, 3C.2a1b.2a.2a.3a, and 4 SARSCoV-2 sequences belonged to the JE1.1 lineage, indicating a common source outbreak for both. The influenza A/H3N2 circulating virus belonged to a different clade than the vaccine strain for 2023 (3C.2a1b.2a.2a). Only 4 students had received the influenza vaccine for 2023. In response, the AFP Surgeon General issued a memorandum to all military health institutions on October 19, 2023 that mandated influenza vaccination as a prerequisite for enrollment of students at all education and training centers, along with implementation of non-pharmaceutical interventions and early notification and testing of students exhibiting influenza-like-illness.
Assuntos
COVID-19 , Surtos de Doenças , Influenza Humana , Militares , SARS-CoV-2 , Humanos , Filipinas/epidemiologia , Feminino , Masculino , Militares/estatística & dados numéricos , Adulto , COVID-19/epidemiologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , SARS-CoV-2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/genéticaRESUMO
Zika virus infection can result in devastating pregnancy outcomes when it crosses the placental barrier. For human pregnancies, the mechanisms of vertical transmission remain enigmatic. Utilizing a human placenta-cotyledon perfusion model, we examined Zika virus exposure in the absence of maternal factors. To distinguish responses related to viral infection vs. recognition, we evaluated cotyledons perfused with either active or inactivated Zika virus. Active Zika virus exposure resulted in infection, cell death and syncytium injury. Pathology corresponded with transcriptional changes related to inflammation and innate immunity. Inactive Zika virus exposure also led to syncytium injury and related changes in gene expression but not cell death. Our observations reveal pathologies and innate immune responses that are dependent on infection or virus placenta interactions independent of productive infection. Importantly, our findings indicate that Zika virus can infect and compromise placentas in the absence of maternal humoral factors that may be protective.
Assuntos
Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas , Placenta , Gravidez , Complicações Infecciosas na Gravidez/patologia , Zika virus/fisiologiaRESUMO
Emergence of novel variants of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean neutralizing antibody titers of 14,000-21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within four days in 7 of 8 animals receiving 50 µg RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only â¼2-fold relative to USA-WA1. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-like betacoronavirus vaccine development. SIGNIFICANCE STATEMENT: The emergence of SARS-CoV-2 variants of concern (VOC) that reduce the efficacy of current COVID-19 vaccines is a major threat to pandemic control. We evaluate a SARS-CoV-2 Spike receptor-binding domain ferritin nanoparticle protein vaccine (RFN) in a nonhuman primate challenge model that addresses the need for a next-generation, efficacious vaccine with increased pan-SARS breadth of coverage. RFN, adjuvanted with a liposomal-QS21 formulation (ALFQ), elicits humoral and cellular immune responses exceeding those of current vaccines in terms of breadth and potency and protects against high-dose respiratory tract challenge. Neutralization activity against the B.1.351 VOC within two-fold of wild-type virus and against SARS-CoV-1 indicate exceptional breadth. Our results support consideration of RFN for SARS-like betacoronavirus vaccine development.
RESUMO
The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the B.1.1.7 and B.1.351 VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 µg) or low (0.2 µg) immunogen dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose two vaccinations. SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.
RESUMO
The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a SARS-CoV-2 spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the Alpha (B.1.1.7), and Beta (B.1.351) VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 µg) or low (0.2 µg) dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose vaccinations. Dose-dependent SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.