Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 20(6): 892-903, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33495631

RESUMO

The basement membrane (BM) is a special type of extracellular matrix and presents the major barrier cancer cells have to overcome multiple times to form metastases. Here we show that BM stiffness is a major determinant of metastases formation in several tissues and identify netrin-4 (Net4) as a key regulator of BM stiffness. Mechanistically, our biophysical and functional analyses in combination with mathematical simulations show that Net4 softens the mechanical properties of native BMs by opening laminin node complexes, decreasing cancer cell potential to transmigrate this barrier despite creating bigger pores. Our results therefore reveal that BM stiffness is dominant over pore size, and that the mechanical properties of 'normal' BMs determine metastases formation and patient survival independent of cancer-mediated alterations. Thus, identifying individual Net4 protein levels within native BMs in major metastatic organs may have the potential to define patient survival even before tumour formation. The ratio of Net4 to laminin molecules determines BM stiffness, such that the more Net4, the softer the BM, thereby decreasing cancer cell invasion activity.


Assuntos
Membrana Basal/metabolismo , Fenômenos Mecânicos , Metástase Neoplásica , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Humanos , Netrinas/metabolismo
2.
Phys Biol ; 15(6): 066004, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-29939152

RESUMO

Mechanical forces are important factors in the development, coordination and collective motion of cells. Based on a continuum-scale model, we consider the influence of substrate friction on cell motility in confluent living tissue. We test our model on the experimental data of endothelial and cancer cells. In contrast to the commonly used drag friction, we find that solid friction best captures the cell speed distribution. From our model, we quantify a number of measurable physical tissue parameters, such as the ratio between the viscosity and substrate friction.


Assuntos
Movimento Celular , Células Endoteliais/fisiologia , Fricção , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Endoteliais da Veia Umbilical Humana , Humanos , Células MCF-7 , Modelos Moleculares , Viscosidade
3.
Glia ; 61(2): 287-300, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23065670

RESUMO

Microglia are the immune cells of the central nervous system (CNS) and play important roles under physiological and pathophysiological conditions. Activation of microglia has been reported for a variety of CNS diseases and is believed to be involved in inflammation-mediated neurodegeneration. Loss of TGFß1 results in increased microgliosis and neurodegeneration in mice which indicates that TGFß1 is an important regulator of microglial functions in vivo. Here, we addressed the role of endogenous TGFß signaling for microglia in vitro. We clearly demonstrate active TGFß signaling in primary microglia and further introduce Klf10 as a new TGFß target gene in microglia. Moreover, we provide evidence that microglia express and release TGFß1 that acts in an autocrine manner to activate microglial TGFß/Smad signaling in vitro. Using microarrays, we identified TGFß-regulated genes in microglia that are involved in TGFß1 processing, its extracellular storage as well as activation of latent TGFß. Finally, we demonstrate that pharmacological inhibition of microglial TGFß signaling resulted in upregulation of the proinflammatory markers IL6 and iNOS and downregulation of the alternative activation markers Arg1 and Ym1 in vitro. Together, these data clearly show that endogenous TGFß1 and autocrine TGFß signaling is important for microglial quiescence in vitro and further suggest the upregulation of TGFß1 in neurodegenerative diseases as a mechanism to regulate microglia functions and silence neuroinflammation.


Assuntos
Microglia/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Células Cultivadas , Citocinas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/farmacologia
4.
Nat Commun ; 13(1): 1636, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35347113

RESUMO

Filopodia are actin-rich structures, present on the surface of eukaryotic cells. These structures play a pivotal role by allowing cells to explore their environment, generate mechanical forces or perform chemical signaling. Their complex dynamics includes buckling, pulling, length and shape changes. We show that filopodia additionally explore their 3D extracellular space by combining growth and shrinking with axial twisting and buckling. Importantly, the actin core inside filopodia performs a twisting or spinning motion which is observed for a range of cell types spanning from earliest development to highly differentiated tissue cells. Non-equilibrium physical modeling of actin and myosin confirm that twist is an emergent phenomenon of active filaments confined in a narrow channel which is supported by measured traction forces and helical buckles that can be ascribed to accumulation of sufficient twist. These results lead us to conclude that activity induced twisting of the actin shaft is a general mechanism underlying fundamental functions of filopodia.


Assuntos
Actinas , Pseudópodes , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Movimento (Física) , Miosinas/metabolismo , Pseudópodes/metabolismo
5.
Nat Cancer ; 3(10): 1165-1180, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36050483

RESUMO

Increasing evidence shows that cancer cells can disseminate from early evolved primary lesions much earlier than the classical metastasis models predicted. Here, we reveal at a single-cell resolution that mesenchymal-like (M-like) and pluripotency-like programs coordinate dissemination and a long-lived dormancy program of early disseminated cancer cells (DCCs). The transcription factor ZFP281 induces a permissive state for heterogeneous M-like transcriptional programs, which associate with a dormancy signature and phenotype in vivo. Downregulation of ZFP281 leads to a loss of an invasive, M-like dormancy phenotype and a switch to lung metastatic outgrowth. We also show that FGF2 and TWIST1 induce ZFP281 expression to induce the M-like state, which is linked to CDH1 downregulation and upregulation of CDH11. We found that ZFP281 not only controls the early dissemination of cancer cells but also locks early DCCs in a dormant state by preventing the acquisition of an epithelial-like proliferative program and consequent metastases outgrowth.


Assuntos
Fator 2 de Crescimento de Fibroblastos , Neoplasias , Humanos , Fatores de Transcrição/genética , Pulmão
6.
J Exp Clin Cancer Res ; 40(1): 175, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016130

RESUMO

BACKGROUND: Cancer-associated fibroblasts (CAFs) comprise a heterogeneous population of stromal cells within the tumour microenvironment. CAFs exhibit both tumour-promoting and tumour-suppressing functions, making them exciting targets for improving cancer treatments. Careful isolation, identification, and characterisation of CAF heterogeneity is thus necessary for ex vivo validation and future implementation of CAF-targeted strategies in cancer. METHODS: Murine 4T1 (metastatic) and 4T07 (poorly/non-metastatic) orthotopic triple negative breast cancer tumours were collected after 7, 14, or 21 days. The tumours were analysed via flow cytometry for the simultaneous expression of six CAF markers: alpha smooth muscle actin (αSMA), fibroblast activation protein alpha (FAPα), platelet derived growth factor receptor alpha and beta (PDGFRα and PDGFRß), CD26/DPP4 and podoplanin (PDPN). All non-CAFs were excluded from the analysis using a lineage marker cocktail (CD24, CD31, CD45, CD49f, EpCAM, LYVE-1, and TER-119). In total 128 murine tumours and 12 healthy mammary fat pads were analysed. RESULTS: We have developed a multicolour flow cytometry strategy based on exclusion of non-CAFs and successfully employed this to explore the temporal heterogeneity of freshly isolated CAFs in the 4T1 and 4T07 mouse models of triple-negative breast cancer. Analysing 128 murine tumours, we identified 5-6 main CAF populations and numerous minor ones based on the analysis of αSMA, FAPα, PDGFRα, PDGFRß, CD26, and PDPN. All markers showed temporal changes with a distinct switch from primarily PDGFRα+ fibroblasts in healthy mammary tissue to predominantly PDGFRß+ CAFs in tumours. CD26+ CAFs emerged as a large novel subpopulation, only matched by FAPα+ CAFs in abundance. CONCLUSION: We demonstrate that multiple subpopulations of CAFs co-exist in murine triple negative breast cancer, and that the abundance and dynamics for each marker differ depending on tumour type and time. Our results form the foundation needed to isolate and characterise specific CAF populations, and ultimately provide an opportunity to therapeutically target specific CAF subpopulations.


Assuntos
Neoplasias da Mama/sangue , Fibroblastos Associados a Câncer/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Transgênicos
7.
Mol Biol Cell ; 29(20): 2378-2385, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30091653

RESUMO

Increased tissue stiffness is a classic characteristic of solid tumors. One of the major contributing factors is increased density of collagen fibers in the extracellular matrix (ECM). Here, we investigate how cancer cells biomechanically interact with and respond to the stiffness of the ECM. Probing the adaptability of cancer cells to altered ECM stiffness using optical tweezers-based microrheology and deformability cytometry, we find that only malignant cancer cells have the ability to adjust to collagen matrices of different densities. Employing microrheology on the biologically relevant spheroid invasion assay, we can furthermore demonstrate that, even within a cluster of cells of similar origin, there are differences in the intracellular biomechanical properties dependent on the cells' invasive behavior. We reveal a consistent increase of viscosity in cancer cells leading the invasion into the collagen matrices in comparison with cancer cells following in the stalk or remaining in the center of the spheroid. We hypothesize that this differential viscoelasticity might facilitate spheroid tip invasion through a dense matrix. These findings highlight the importance of the biomechanical interplay between cells and their microenvironment for tumor progression.


Assuntos
Matriz Extracelular/metabolismo , Neoplasias/patologia , Animais , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Elasticidade , Humanos , Camundongos , Invasividade Neoplásica , Ratos , Reologia , Viscosidade
8.
Sci Rep ; 7: 43800, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262796

RESUMO

Two of the classical hallmarks of cancer are uncontrolled cell division and tissue invasion, which turn the disease into a systemic, life-threatening condition. Although both processes are studied, a clear correlation between cell division and motility of cancer cells has not been described previously. Here, we experimentally characterize the dynamics of invasive and non-invasive breast cancer tissues using human and murine model systems. The intrinsic tissue velocities, as well as the divergence and vorticity around a dividing cell correlate strongly with the invasive potential of the tissue, thus showing a distinct correlation between tissue dynamics and aggressiveness. We formulate a model which treats the tissue as a visco-elastic continuum. This model provides a valid reproduction of the cancerous tissue dynamics, thus, biological signaling is not needed to explain the observed tissue dynamics. The model returns the characteristic force exerted by an invading cell and reveals a strong correlation between force and invasiveness of breast cancer cells, thus pinpointing the importance of mechanics for cancer invasion.


Assuntos
Algoritmos , Movimento Celular , Modelos Biológicos , Imagem com Lapso de Tempo/métodos , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , Cinética , Células MCF-7 , Neoplasias Mamárias Animais/patologia , Camundongos , Microscopia de Contraste de Fase , Invasividade Neoplásica
9.
Sci Rep ; 7(1): 16887, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203823

RESUMO

Organotypic co-cultures bridge the gap between standard two-dimensional culture and mouse models. Such assays increase the fidelity of pre-clinical studies, to better inform lead compound development and address the increasing attrition rates of lead compounds within the pharmaceutical industry, which are often a result of screening in less faithful two-dimensional models. Using large-scale acid-extraction techniques, we demonstrate a step-by-step process to isolate collagen I from commercially available animal byproducts. Using the well-established rat tail tendon collagen as a benchmark, we apply our novel kangaroo tail tendon collagen as an alternative collagen source for our screening-ready three-dimensional organotypic co-culture platform. Both collagen sources showed equal applicability for invasive, proliferative or survival assessment of well-established cancer models and clinically relevant patient-derived cancer cell lines. Additional readouts were also demonstrated when comparing these alternative collagen sources for stromal contributions to stiffness, organization and ultrastructure via atomic force microscopy, second harmonic generation imaging and scanning electron microscopy, among other vital biological readouts, where only minor differences were found between the preparations. Organotypic co-cultures represent an easy, affordable and scalable model to investigate drug responses within a physiologically relevant 3D platform.


Assuntos
Técnicas de Cultura de Células/métodos , Colágeno/química , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Colágeno/isolamento & purificação , Matriz Extracelular/metabolismo , Gefitinibe/farmacologia , Humanos , Macropodidae/metabolismo , Camundongos , Microscopia de Força Atômica , Ratos , Tendões/metabolismo
10.
Front Oncol ; 5: 224, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539408

RESUMO

Metastatic complications are responsible for more than 90% of cancer-related deaths. The progression from an isolated tumor to disseminated metastatic disease is a multistep process, with each step involving intricate cross talk between the cancer cells and their non-cellular surroundings, the extracellular matrix (ECM). Many ECM proteins are significantly deregulated during the progression of cancer, causing both biochemical and biomechanical changes that together promote the metastatic cascade. In this review, the influence of several ECM proteins on these multiple steps of cancer spread is summarized. In addition, we highlight the promising (pre-)clinical data showing benefits of targeting these ECM macromolecules to prevent cancer progression.

11.
Dev Cell ; 35(6): 759-74, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26702834

RESUMO

ROCK signaling causes epidermal hyper-proliferation by increasing ECM production, elevating dermal stiffness, and enhancing Fak-mediated mechano-transduction signaling. Elevated dermal stiffness in turn causes ROCK activation, establishing mechano-reciprocity, a positive feedback loop that can promote tumors. We have identified a negative feedback mechanism that limits excessive ROCK signaling during wound healing and is lost in squamous cell carcinomas (SCCs). Signal flux through ROCK was selectively tuned down by increased levels of 14-3-3ζ, which interacted with Mypt1, a ROCK signaling antagonist. In 14-3-3ζ(-/-) mice, unrestrained ROCK signaling at wound margins elevated ECM production and reduced ECM remodeling, increasing dermal stiffness and causing rapid wound healing. Conversely, 14-3-3ζ deficiency enhanced cutaneous SCC size. Significantly, inhibiting 14-3-3ζ with a novel pharmacological agent accelerated wound healing 2-fold. Patient samples of chronic non-healing wounds overexpressed 14-3-3ζ, while cutaneous SCCs had reduced 14-3-3ζ. These results reveal a novel 14-3-3ζ-dependent mechanism that negatively regulates mechano-reciprocity, suggesting new therapeutic opportunities.


Assuntos
Proteínas 14-3-3/metabolismo , Proliferação de Células/fisiologia , Homeostase/fisiologia , Transdução de Sinais/fisiologia , Cicatrização/fisiologia , Quinases Associadas a rho/metabolismo , Animais , Epiderme/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa